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Abstract—The Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) is a well-known data-mining method
capable of localization of accident blackspots of the road network
based on the already existing road accident database records.
However, its parameterization raises many problems, as its
operation is significantly different from the traditional Sliding
Window (SW) method. This paper presents a Particle Swarm
Optimization (PSO) based method to find a base parameter
set for the DBSCAN method which gives similar results to the
already existing SW. The fitness function of the PSO algorithm
is based on the similarity of accident blackspots, which needs a
definition of a novel metric. The evaluation results show that the
DBSCAN method used with the recommended parameter set is
capable to give similar results to the SW method used by road
safety experts.

Index Terms—DBSCAN, Particle Swarm Optimization, Acci-
dent Blackspot, Sliding Window

I. INTRODUCTION

The basic objective of road safety management is the pro-
tection of all participants and decreasing the property damage
caused by accidents [1]. There are several (mostly financial)
limitations of preventive actions; therefore, it is essential to
find the appropriate locations and operations to maximize the
expected benefits. For this reason, it is important to have
appropriate methods for finding accident hotspots.

These accident hotspots (also known as blackspots) are
some hazardous locations of the public road network where the
number of accidents is higher than expected (Fig. 1). blackspot
management consists of three consecutive steps: identification,
analysis, and treatment of these areas. This paper focuses only
on the first step, which is the most crucial part of the process.
In this phase, the input is given by several databases (road
network, weather, historical accident data), and the expected
output is a list of potential blackspots (these can be considered
as blackspot candidates until further analysis can prove that
these are real hazardous areas).

However, the scientific work in this area has a long tradition;
interestingly, there is no generally accepted definition of road
accident blackspots. There are several variations and the offi-
cial definition used by engineers also varies by country. This
paper will use the definition of the Hungarian government:
outside built-up areas, blackspots are road sections no longer

Fig. 1. blackspot example (image generated by Google Maps.)

than 1000 meters where the number of accidents during the
last 3 years is more than 3.

There are various algorithms for blackspot localization,
usually according to the specific definitions [2]–[6]. In the
Hungarian case, the traditional sliding window method fulfills
the requirements. However, this is a somewhat outdated al-
gorithm based on road numbers and section numbers. There
are more accurate data-mining-based techniques using the
GPS coordinates of accidents like the DBSCAN algorithm
(Density-Based Spatial Clustering of Applications with Noise).
But the output of these planar methods significantly differs
from the results of the sliding window algorithm, and these
require different parameters. This raises several issues for road
safety engineers and regulators to adopt these new methods to
the already existing road safety methodology.

This paper presents a heuristics-based method to find the
appropriate parameter set of the DBSCAN algorithm than can
be used to achieve similar results that the output of the sliding
window method. The rest of the paper is structured as follows:
the next section presents the already existing results in the
field of blackspot management and parameter optimization.



Fig. 2. Example for the DBSCAN algorithm

The third section presents the used methodology and the next
contains the evaluation of the results. Finally, the last section
contains the conclusions and limitations.

II. RELATED WORK

In the field of accident hot spot identification, one of the
most traditional methods is the well-known sliding window
technique [7], [8]. It has two input parameters: section length
(l) and a threshold value for the minimum number of accidents
(amin). The main steps of the algorithm are a) select one road
from the network and split it into equally sized sectors (using
parameter l) b) select the accidents that occurred in the given
section c) if the number of these is higher than the threshold
(amin), mark the section as a blackspot candidate.

As a one-dimensional technique, it has several limitations.
It is not possible to use the GPS-based accident coordinates
directly it is necessary to map these to the road network.
Furthermore, since it depends on the accidents on one specific
road, it is not possible to find the blackspots at intersections.
That was the reason for the emergence of spatial data analysis
techniques like the KDE (Kernel Density Estimation) method
which gives the accident density estimation at a given refer-
ence point [7], [9], [10]. This value is based on the search
radius distance, and it is also possible to define several kernel
functions.

As an alternative, it is also possible to use the DB-
SCAN data-mining algorithm for blackspot identification. As
a density-based clustering method, its objective is to group
items where the elements of the same group are similar to
each other; meanwhile, the elements of different groups are
not. In the field of road safety engineering, the elements are the
accidents in the public road network identified by planar GPS
coordinates. Clusters are the potential blackspots (accidents
similar to each other) and the outliers are the random accidents
not belonging to any hot spot. As a small modification, it is
also possible to set a lower limit to the density of the cluster
to decrease the number of false-positive results.

The objective of the research work is to optimize the
parameters of the DBSCAN algorithm [11]. As there are
two floating-point variables (distance, density limit) and one
integer (minimum accident count) it is hard to manually find
the appropriate values. There are several heuristics applicable
for this task, like Hill Climbing, Genetic Algorithm [12], or
Particle Swarm Optimization [13].

III. METHODOLOGY

A. Dataset

The official road accident database of Hungary was used
in the experiments. This dataset contains all accidents with
personal injury collected by the police and handled by the
Central Statics Department of Hungary. The completeness of
the data is ensured by legislation because the participants of
any road accident with personal injury are obliged to report it
to the police.

The official blackspot definition is based on a 3-year long
interval therefore accidents from the years 2017 to 2019 were
used. The sliding window method can only examine data for
one single road; therefore, an additional filter was set to use
only the accidents that occurred on road number 1.

B. Clustering methods

The parameters of the sliding window methods are accord-
ing to the official blackspot definition: the sliding window
length (l) is 1000m, and the minimum number of accidents
(amin) is 4.

The objective of the optimization is to find the optimal
parameters of the DBSCAN method. These parameters are:

• ϵ – growing distance (float value between 1m and
1000m);

• amin - minimum number of accidents (integer between
2 accident and 10 accident);

• λ - limit for accident density (float value between 0
accident/m2 and 1 accident/m2).

The density of a cluster is calculated by the number of
accidents divided by the area of the given cluster. Where the
area of the cluster is calculated by the Gauss’ area formula:

A =

∣∣∣∑n−1
i=1 xiyi+1 + xny1 −

∑n−1
i=1 xi+1yi − x1yn

∣∣∣
2

(1)

Where
• A - the area of the cluster;
• n - number of accidents in the cluster;
• (xi, yi) - two-dimensional planar coordinates of the i-th

accident of the cluster (where i ∈ {1, 2, ..., n}).

C. Fitness function

The result of the fitness function is the similarity of the
results given by the sliding window and the DBSCAN algo-
rithm. Both methods result in a list of blackspot candidates;
therefore, further calculations are required to determine the
similarity.

For this purpose, the following definitions have been de-
fined:



• The similarity between two blackspots (BS1 and BS2)
is

s(BS1, BS2) =
|BS1 ∩BS2|
|BS1 ∪BS2|

. (2)

Where BS1 ∩ BS2 is the intersection of the blackspots;
therefore, |BS1 ∩ BS2| shows the number of accidents
found at both blackspots. |BS1 ∪BS2| is the number of
accidents in both blackspots without duplications.
As visible, this value is 1.0 if the two blackspots are the
same (both contain the same accidents). It is 0.0 if there is
not any intersection between the two clusters. The value
is between 0.0 and 1.0 if there is some partial equation
between the two blackspots.

• The similarity between two blackspot list is calculated by
the following steps:

1) Two lists (L1 and L2) are created based on the
blackspots given by the two methods.

2) Let (BS1, BS2) is a pair of blackspots from L1 and
L2 where the similarity of BS1 and BS2 is maximal
over any other pairings, based on (2)

3) Remove BS1 from L1 and BS2 from L2. And
increase an S value with the similarity score of BS1

and BS2.
4) Repeat steps 2-3. until there are no possible pairings
5) The similarity of two blackspot lists is calculated

by

f(L1, L2) =
S

|L1|+ |L2|
(3)

Where |L1| and |L2| are the initial sizes of L1

and L2 lists. f is the similarity between the two
blackspot lists, which is the fitness function of the
heuristics.

D. Optimization method

The Particle Swarm Optimization method was used to find
the appropriate parameter set. The main parameters of the
experiment are the following:

• Population size: 10
• Number of iterations: 200
• C1 parameter: 1.49445
• C2 parameter: 1.49445
• w parameter: 0.729
The velocity at time t + 1 of a given P participant is

calculated by the following formula:

P velo
t+1 = w∗P velo

t +C1∗r1∗(P opt
t −P pos

t )+C2∗r2∗(Bt+P pos
t ).

(4)
Where
• P velo

t - the velocity of the given participant at time t
• P pos

t - the position of the given participant at time t
• P otp

t - the local optimal position of the given participant
at time t

• Bt - the global optimal position of the swarm at time t
• w - Inertia weight

• C1 - Velocity coefficient affected by personal best
• C2 - Velocity coefficient affected by global best
• r1, r2 - random variables between 0..1
The PSO method was started with a random initial popula-

tion of 10 elements. The initial velocity was 0 for all particles.
After that, the algorithm calculates the velocity and the new
position of all elements of the population. This process is
repeated 300 times, continuously logging the parameters and
fitness values of all elements and the best/average fitness of
the population by iteration.

IV. EVALUATION

As the first step, the sliding window method was executed
on the dataset. The result of this procedure is a list of 31
potential blackspots.

The objective of the next step is to find the parameter set
able to give similar results using the DBSCAN method. The
PSO algorithm was used to find this parameter set.

Fig. 3 shows the fitness values by the iterations of the PSO
method.

As visible, the optimization was successful, the final fitness
was significantly better than the initial values. The best fitness
value was reached at a relatively early stage at iteration 19.

The element with the best fitness value represents the
following parameter set:

• ϵ = 343.2503m
• α = 4
• λ = 0.0002 accident/m2

In the case of the Sliding Window method, the 1000m
distance is the length of the window, the ideal ϵ value in the
case of DBSCAN is significantly less (343.250m). That makes
sense, because in the case of DBSCAN, this is a growing
distance, not an absolut length. As also expected, the α value
is the same as the amin value.

Detailed comparison results are shown in Table I. As visible,
two of the original blackspots have no pairs in the DB-
SCAN results. In the opposite direction, two of the DBSCAN
blackspot candidates are not paired to any Sliding Window
spots. The remaining pairs show significant similarities. Most
of them are almost identical and there are some pairs with
minor overlapping accidents.

V. CONCLUSIONS

The objective of the paper was to determine a parameter
set for the DBSCAN algorithm to give similar results to the
traditional Sliding Window method. A novel blackspot pairing
and evaluation method were developed to assign a fitness
function to the potential parameter sets. A Particle Swarm
Optimization was used to iteratively approximate the optimal
value. The results of the experiment were evaluated, and these
are acceptable.

As a limitation, it is worth noting that the given parameter
set is not sure the best parameter set for the DBSCAN method.
It is just as similar to the Sliding Window as possible, to help
the work of road safety engineers during the transition period
of adopting the new method. There may be better parameter
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Fig. 3. Results of the PSO algorithm

sets that can make better use of the advantages of the planar
method.
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TABLE I
COMPARISON OF THE RESULTS OF THE SW AND DBSCAN METHODS.

Sliding Window DBSCAN Similarity
Blackspot

ID
Accident

count
Blackspot

ID
Accident

count

8 6 18 6 1.00
23 5 6 5 1.00
25 11 22 11 1.00
26 9 25 9 1.00
27 8 20 8 1.00
16 14 16 15 0.97
13 10 28 11 0.95
9 8 0 7 0.93
3 6 24 7 0.92
14 7 3 6 0.92
12 6 19 5 0.91
10 9 27 11 0.90
5 5 10 4 0.89
6 10 7 8 0.89
15 5 8 4 0.89
17 5 1 4 0.89
4 8 26 9 0.82
30 6 14 7 0.77
22 6 12 5 0.73
20 12 17 25 0.65
24 9 2 4 0.62
0 8 23 16 0.58
21 8 13 6 0.57
18 5 21 5 0.40
7 5 5 4 0.22
11 6 - 0 0.00
28 6 - 0 0.00
- 0 9 4 0.00
- 0 15 4 0.00


