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Abstract— The forces of nature have been transforming our
world for millions of years. One of these forces is hydraulic
erosion, which uses the movement and displacement of water to
erode and relocate soil. Most of the terrain producing algorithms
are purely mathematical, and the results often seem artificial at
best. The solution to this comes in form of simulation software,
that emulate nature’s forces to produce said terrains. Today’s
technology allows us to harness the computational powers of GPUs
in order to speed up work. The following work shall map and
overcome the obstacle that is the simulation of hydraulic erosion
and apply GPGPU techniques to accelerate the process.
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I. INTRODUCTION

The world around us is constantly changing. These
transformations are an integral part of the forces of nature that
affect everything on the planet, whether it is the Central
Highlands or a backyard garden. What connects these two
distant geographical locations are the soil-transforming
processes that shape them. Of course, we are not talking about
lithospheric movements gradually altering residential gardens
over centuries, as this is not a relevant threat in our daily lives.
The more significant soil-transforming process lives in the form
of erosion.

Erosion is a geological phenomenon in which materials on
the Earth's surface are carried away by various mediums and
deposited elsewhere. Specifically, hydraulic erosion refers to the
movement of materials by the flow of water, which can be
triggered by rivers/streams, floods, coastal waves, or rainfall
depending on climate. This phenomenon is a significant part of
many engineering problems, such as construction and
agriculture. As simple as this idea sounds, creating an accurate
simulation suitable for it is quite complex.

In the world of computer science, erosion aims to overcome
the problem of creating realistically appearing terrains. Existing
fractal implementations do not always produce visually
satisfying, natural-looking maps, and noise-based approaches do
not always yield results. The path to creating the resulting maps
is entirely mathematical and does not apply methods for terrain
transformation found in nature. Since the most significant soil
degradation process can be simulated by the movement of water,
the world of computer graphics has been dealing with producing
appropriate solutions for nearly 30 years. The task poses
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challenges in various fields, from game development to
filmmaking. When simulating water movement, as it is
extremely resource-intensive, the idea of implementing it with
graphical processors is very appealing.

II. RELATED WORK

The process of hydraulic erosion is difficult to describe
mathematically. It depends on numerous dynamically changing
parameters, making it challenging to achieve perfect results even
with large-scale systems used at the state level for soil loss
prediction (such as WEPP, RUSLE2, etc.). Furthermore, most
equations describing the processes are mostly empirical.
Comprehensive simulation of the event has been studied for over
20 years, and as a result, several successful solutions have been
provided by various researchers.

In the following paragraphs we will take a look at previously
applied methods for this type of simulation.

A. Data Structure

The selection of the data structure requires a compromise
between accuracy and speed. The more data we store, the more
accurate and computationally demanding the simulation
becomes. Most programs choose between two structures: the
heightmap (HM) and voxels. Voxels define triangles, typically
used for fast rendering. Cubes can also be considered, here the
advantages of using heightmaps become clearer. These two data
structures are evaluated in [7].

The voxel approach results in a more accurate simulation
because they can provide much more data/information about
themselves and their environment. However, this comes at a
cost. In exchange for a more accurate simulation, we get a
significantly slower one, and the required storage space also
increases substantially. Heightmaps are usually two-
dimensional matrices where each "cell" provides feedback on
the data stored within it at the given coordinates. Assuming n
bytes of data are stored in each cell, an HM of size 1024x1024
requires n MB of storage, whereas using voxels, n 10243,
meaning # GB will be needed.

Furthermore, several methods effectively utilize the
opportunities provided by HM [1, 5], such as the simplicity of
parallelization with minimal overhead, low simulation speed
without sacrificing realistic implementation. Initially, the
simulation was divided into four elementary steps, later refined
for accuracy [2] and further expanded [3]. The fundamental
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principle of maintaining system stability while being able to
execute these steps in any order remained unchanged. The
sequence of steps begins with the appearance of water and ends
with its evaporation.

Each element of the HM stores data about its own
coordinates and the state of the simulation. Consequently, the
data structure allows for GPU parallelization without significant
complications.

B. Modeling Water and Erosion

Water mobility is an integral part of the project, addressed
by the Navier-Stokes equations in the mathematical world.
These equations were processed [5S] to be applicable for
computer simulation. They were solved in multiple dimensions
depending on the simulation's goals. The 3D representation
allows for the natural formation of caves and underground
structures. However, this is limited to maps with a low number
of cells [11] and is highly resource-intensive.

In contrast, 2D implementations already have low-cost
computational solutions and implementations [4, 8]. Often, [5]
applies the Shallow Water Modell (SWM) for 2-3D interactive
processing of Navier Stokes equations. The model had certain
constraints, such as assuming a grid-based HM data structure. In
contrast, the SWM is perfectly suitable for simulating hydraulics
on maps with a larger number of cells and is also applicable for
GPU parallelization, as demonstrated by [2].

Another approach is presented in [1], where soil erosion is
simulated through an interactive process. This system is called
Smoothed Particle Hydrodynamics (SPH). The essence of the
processing is to divide water and the surface into molecules but
does not differentiate between them, rather moves the molecules
using a so-called "donor-acceptor" system along with the water.
However, this processing does not allow for the formation of
three-dimensional geographical elements and does not make
significant distinctions in computational demand compared to
projects using the SPH. [1] is also implemented on the CPU,
making the molecule-based approach unnecessarily complex for
GPU processing.

It is important to highlight the method presented in SWM [8]
for moving water between cells. The so-called "pipe model"
method connects the eight neighbors of a cell with a virtual pipe,
which simplifies the determination of the amount of fluid
leaving the cell and entering it, and more importantly, makes it
easier to determine velocity vectors. [2] first parallelized the
method on the GPU and simplified it by connecting virtual pipes
only to the neighboring four cells.

The implementation of erosion in almost all cases (except for
example [1]) estimates the force exerted on the soil directly with
a velocity vector and determines the amount of sediment that can
be carried with the water, similar to events occurring in nature.

C. Visualization

The choice of data structure significantly affects
visualization possibilities. Therefore, we discard voxel-based
data storage and assume an HM-based structure from now on.

[2] applies the multi-pass algorithm for visualization. The
method passes two-dimensional textures to the GPU memory,

then draws a quad parallel to the image space. Then, for each
pixel of the quad, it calculates the amount of data needed to
create the necessary geometric primitives later. This calculation
is done by the "fragment shader," which is a phase of the
OpenGL pipeline. Finally, the output data is written into a target
element (these can be textures or render targets) used for the next
such process. One advantage of this solution is that the process
is much faster on GPU implementations and scales well with
grid resolution. Cells located on the edges of the grid require
special treatment. In this solution, the fragment shader
determines if there is an extreme value at a given location, so
there is no need for a fragmentation process.

[3] works by stacking two-dimensional four-channel
floating-point texture layers. These are attached to a single frame
buffer object. It stores all associated simulation parameters in
texel elements (which, like cells, are positioned at the same
coordinates). Then, using the two buffers, it applies the ping-
pong method, defining one buffer as input and the other as
output, swapping them after the calculation, and restarting. This
implementation is done in a single fragment shader, which uses
the OpenGL multiple render target function for visualization.

There's also mention of ray tracing. Newer algorithms allow
real-time implementation of this method and optimally utilize
the capabilities of modern graphics cards. There are solutions
excellently supports modern APIs with its processing and
functions.

For HM-matrix data structures, to simplify implementation,
we can consider simpler alternatives that do not require GPU
programming, such as Excel, which would allow for two-
dimensional representation with color coding. MATLAB is also
noteworthy, as it would be able to visually represent a three-
dimensional plot made from our multidimensional array.

III. SIMULATION MODEL

The process to be simulated is broken down into components
[3], where various formulas will be applied. The steps for
calculating erosion are divided into five main parts, similar to
processes occurring in nature:

1) Water appears in some form.

2) Simulation of water movement.

3) Sediment uptake due to water movement.

4) Movement of sediment in the water.

5) Evaporation of water, deposition of sediment.

Our model will apply discrete time steps to calculate the five
main steps, where t indicates the parameter's state at a given
time, and At represents the change in time for the simulation.
After calculating the five steps, the next time step occurs (t+At),
and the process starts again. The simulation will always work
with a fixed number of steps, requiring the program to be rerun
for further simulation. For some of the equations presented
below, we will need the different states of individual fields, so
we will distinguish between states using subscripts 1,2, 3, ..., n.

As discussed earlier, our program will be based on SWM;
therefore, we will use the HM data structure. Consequently, the
simulated terrain will be built in a 2D matrix, where the elements
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will be cells. Their positions will be denoted by the cell's (x, y)
coordinates.

Each cell contains data necessary for the logic's operation
and information about its own state. These data will be regularly
updated during the simulation. di(x,y) represents the water,
while bi(x,y) represents the height of the soil.

A. Movement of Water

The simulation of water movement in the literature presents
similar approaches [1, 3]. We determine the water movement by
combining the works of [3, 4], and the following equations are
based on these works. In our simulation, the water height is
increased by natural water sources (streams, rivers, etc.) and
precipitation events. The precipitation event is described by the
following equation:

dl(x,y) =dt(x,y) + At - rt(x,y) - Kr (1)

In the above equation, d1 represents the water height stored
in the given cell, rt is a locally determined value indicating the
amount of precipitation received by the cell, and K7 is a global
parameter used for scaling rainfall.

Next, we will discuss the flow of water between cells. We
will implement the flow of water between cells using the PM
adaptation used in [8], which has been successfully used for
erosion simulation [4].

Each cell (x, y) has four virtual pipes through which it can
communicate water with its neighbors. We only store the
outflowing water quantity from the cell, denoted by f = (FT, FB,
FR, FL). The exchange of fluid between two cells is controlled
by the pressure difference between them. The change in state of
the upper neighbor is described as follows:

AnT
Floae = max(0, F{ (x,y) +At-AZ2ED) ()

Where A represents the cross-sectional area of the virtual
pipe (in m?), g is the gravitational constant, [ is the length of the
virtual pipe (which is a constant 1 in our case), and AhT(x,y) is
the height difference between the cell and its upper neighbor.

ART(x,y) = be(x,y) +di(x,y) = b(x —Ly) -
di(x—1y) 3)

Communication with the other neighbors occurs similarly.
However, there might be a problem with the quantity of water
flowing out of the cell, as it might exceed the available amount.
To avoid this, a variable K is introduced to determine the amount
that can be pumped out of the cell based on the amount of water
stored in it. This step is discussed and justified in detail in [2].
T 5 )

K=mn(l,—Fmpg—"TFF—
( " (FT+FB+FL+FR) . At

Where [X and lY represent the distance between cells on the
map, in the x/y direction, respectively. The upper limit of the
formed border is:

Floac®y) =K - Flop(xy), i = T,BLLR (5)

Finally, the change in water is calculated with the inflow
from neighboring cells (fin) and outflow to neighboring cells

(fout):

AW (x,y) = At - (3 fin =2 four) = Dt~ (Ffp oy + 1) +
FoaeCoy = 1) + FLpGe+ 1L,y) + Flpe(x —
1,y) — ZL‘:T,B,L,R Fiiae (x, y)) (6)

The water height in the cells is updated as follows:

dy(x,y) = dy(x,y) + 2 (7
Ixly

It is also necessary to determine the velocity vector VV, which is
required to simulate erosion due to water pressure (in this study,
only horizontal velocity is considered). This can be done by
calculating the average flow of water passing through the cell.
The water passing through cell (x, y) in the X direction:

FRx—1,9)-FL(xy)+FR (x,y)-FL(x+1)

AV, = .

®)

Similarly, the calculation is done in the Y (AVyAVy)
direction. After the calculations, to evaluate the new state, we
need to consider water evaporation. We introduce parameter Ke
into our simulation, which scales evaporation.

depac(0,y) = dp(x,y) - (1= Ke - At) - (13)

With this, the calculation of the fifth step is completed, and
the next iteration can begin.

Due to the structure of the HM, we need to be careful with
the boundaries, namely, what happens if one of the neighbors
points outside the map, e.g., cell (0, 0). During the
implementation of the program, we avoid water outflow from
the map, in such events by treating the existing cells specially,
where the appropriate Fi value(s) store a constant value of: -oo
during calculations when encountering such a boundary value.

B. Erosion Systems

The effect of water on the ground causes a certain amount
of material to detach, which is then carried away by the water.
However, this alone is not sufficient. Water also needs an upper
limit on the amount of material it can carry. We describe this
upper limit with a simplified equation presented in [9]:

CCx,y) = K, -sin(a(x,y)) [9(x,y)| (9

Where: C (x, y) describes the sediment carrying capacity of
the water flowing in cell (X, y). Kc is a global parameter that
scales this value. a is the local slope angle, calculated as:

— -1,_gvhv
o = cos™ (o))

(92)

Where: gv is the local gradient vector, v is the projection
of gv onto the x, y plane. cos(a) is the scalar product divided
by the product of the vectors' lengths

However, a problem arises if the size of aa is quite low, as
this makes the erosivity significant in places where the slope of
the ground is nearly horizontal, unnecessarily consuming
computational resources. To avoid this, we introduce Ca, a
framework determined by the user. This will regulate the
acceptability of the aa value. Then, if C is greater than ss,

which represents the sediment stored in the water from the
ground, we dissolve part of it in the water:
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beiar = by — Ko(C — s¢)
sy = ¢ + K(C —s¢) (10)

Where: Ks is the dissolution coefficient, also a parameter
set by the user, sl is the quantity of sediment carried.
Otherwise, if C is smaller than s, their roles in equation (10) are
swapped, and Ks is replaced with Kd, the deposition
coefficient, causing some of the carried sediment to deposit.
However, this would not consider the law of water
displacement, so to address this, we add the collected sediment
to the water height:

d3 = dz + At - KS(C - St) (loa)

Conversely:

ds = d, — At - Ky(s, — C) (10b)

After calculating the erosive processes, we calculate the
movement of sediment using the advection equation:

as _
S+ (@ Vs)=0 (1)

We solve this equation using the method presented in [11].
We determine the new value of the cell v (u, v):

Seene(,y) = s1(x —u-At,y — v At) (12)

If s1 were to fall outside the map, its value would be
determined by linear interpolation from its four neighbors.

IV. EXPERIMENTAL RESULTS

When examining the measured time results, we take into
account two main factors. The first is the configuration of the
computer on which we execute the simulation. Consequently,
the achieved results vary from one computer to another. The two
most influential factors in our case are the CPU and GPU units.
The results presented below were achieved on a thirteenth
generation Intel(R) Core(TM) i5-13600K 3.50 GHz processor
and a NVIDIA GeForce GTX 1050Ti graphics card released in
2016. There is a significant generational and performance
difference between the two devices, further outlining the
outcome of parallelization.

The other factor is the size of the map (see: Table I), on
which erosion processes take place. This is responsible for the
number of cells and consequently the number of threads that
need to be launched. In this case, the dimensions of the map are
multiples of thirty-two to fully harness GPU acceleration. Other
simulation parameters have a strong impact on computational
requirements, but they are documented for reproducibility. The
program executes the appropriate sequence of steps 50 times,
then displays the final result (Figure 1). The measurements in
the table refer to the total number of cycles. Each metric was
executed on the "cone" maps obtained from the same instance
of the program. The simulation is primarily performed on the
GPU, but the CPU runtime is also displayed as a reference value.

Table. I: Measured simulation time.

Size of At At At At
map CPU(s) | GPU(s) | MAT(s) K SMAT(s)
256x256 3.3678 0.7072 1.0313 4.3939
512x512 | 124146 | 1.6418 | 2.8567 -
1024x1024 | 51.1994 | 4.5739 5.1003 -
2048x2048 | 198.3065 | 16.3993 | 11.1474 -

Based on the results, it is clear that thanks to parallelization,
we can achieve nearly fourteen times acceleration. This value is
particularly significant for high-resolution maps. The
visualization process sometimes incurs almost the same cost as
the simulation itself. However, it is important to note that this
value represents the entire visualization process. It includes
uploading data to the engine's memory twice, as we visualize not
only the end but also the initial state.

An advantage can be gained if we perform the generation
without closing the program. This is because the initialization
time of the Matlab engine can be ignored after the first run.

The measured time and the size of the map are nearly directly
proportional. Based on the obtained data, if we increase the
number of cells fourfold, then the CPU simulation time stays
within €C = 0.4969613 seconds and the GPU simulation time
within €D = 0.8941916 seconds the time distanse from four
times the previous measurement.

Figure 1. shows the result of a simulation using our program.

Fig. 1. Simulation result

Comparing the results proves to be a complex task, as
relevant literature distinguishes a wide spectrum of software and
hardware differences. Time values measured in [5] are most
compatible with ours for comparison, due to the similarity in the
execution of the simulation and calculation steps. Ultimately, we
achieved approximately threefold acceleration in the measured
time values, but the significant hardware capacity difference
between the two projects must be taken into account.
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V. CONCLUSION AND FUTURE WORK

In this paper, we have designed a simulation program aimed
at simulating real physical phenomena. To achieve this, we
investigated and applied numerous methods still used in
computer graphics to this day [11]. We compared the SWM
method with particle-based simulation tools and defined a
Matlab-based visualization model against GPU pipelines and
other two-dimensional methods. Furthermore, we examined
agricultural applications to bring the simulation closer to nature
in this mathematical manifestation.

The implementation of the planned application has been
documented component by component, and the parameters used
for testing the operation have been provided to the readers.

We tested the components of our program using both black-
and white-box methods. During the tests, we ensured execution
according to system requirements and validated input and output
data.

During the evaluation of the specified program
implementation, we confirmed that the planned software is
capable of quickly and efficiently mapping the process of
hydraulic erosion. The user has access to numerous tools in the
development process, allowing them to refine the execution
according to their needs and thus providing exceptional
versatility.

When evaluating the final results, we confirmed the
correctness of the operation and its suitability for creating maps
that appear realistic. The planned application is successfully able
to process matrix data structures with the parallelized
implementation of the SWM. Our input interface is intuitive and
guarantees the correctness of input data, while also allowing for
easy expansion of the input data list. During visualization, we
have full access to and interaction with the generated terrain.

Furthermore, the program remains open to further
development and optimization of computational processes and
systems. Thermal erosion could be a potential focus on further
development and re.

Heat/thermal erosion provides a perfect example of the
opportunities offered by natural processes. The soil
transformation process takes into account heat changes, which
depend on the movement of the sun and the heat retention of the
air. Such an implementation can be observed [12,13]. This
natural phenomenon appears in numerous studied
implementations, and a noticeable trend is the finer-grained state
of the final result compared to tools operating purely on
hydraulic principles.

Additionally, there is the possibility of introducing layers
mentioned in [6], where the erosion processes depend on the
geological quality of a layer. Consequently, this allows for a
more detailed exploration of erosion process properties. Here,

expansion of functions performing erosion and the cell data
structure would be required.

Introducing custom types for individual soil layers is
conceivable, storing information on the expected behavior
during soil degradation processes or how they assist them.
Functions could erode surfaces from top to bottom, and it's
possible to replicate the decay and sliding of looser materials.

Our current visualization method comes with strong
limitations. Initiating a motor is time-consuming, and each
visualization of a map occupies significant memory space.
However, beyond these constraints, there are still untapped
opportunities in leveraging Matlab tools comprehensively.
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