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Abstract— The forces of nature have been transforming our 

world for millions of years. One of these forces is hydraulic 

erosion, which uses the movement and displacement of water to 

erode and relocate soil. Most of the terrain producing algorithms 

are purely mathematical, and the results often seem artificial at 

best. The solution to this comes in form of simulation software, 

that emulate nature’s forces to produce said terrains. Today’s 

technology allows us to harness the computational powers of GPUs 

in order to speed up work.  The following work shall map and 

overcome the obstacle that is the simulation of hydraulic erosion 

and apply GPGPU techniques to accelerate the process.  

Keywords— Hydraulics, Erosion, Simulation, Computer 

Graphics, GPGPU 

I. INTRODUCTION  

The world around us is constantly changing. These 
transformations are an integral part of the forces of nature that 
affect everything on the planet, whether it is the Central 
Highlands or a backyard garden. What connects these two 
distant geographical locations are the soil-transforming 
processes that shape them. Of course, we are not talking about 
lithospheric movements gradually altering residential gardens 
over centuries, as this is not a relevant threat in our daily lives. 
The more significant soil-transforming process lives in the form 
of erosion. 

Erosion is a geological phenomenon in which materials on 
the Earth's surface are carried away by various mediums and 
deposited elsewhere. Specifically, hydraulic erosion refers to the 
movement of materials by the flow of water, which can be 
triggered by rivers/streams, floods, coastal waves, or rainfall 
depending on climate. This phenomenon is a significant part of 
many engineering problems, such as construction and 
agriculture. As simple as this idea sounds, creating an accurate 
simulation suitable for it is quite complex. 

In the world of computer science, erosion aims to overcome 
the problem of creating realistically appearing terrains. Existing 
fractal implementations do not always produce visually 
satisfying, natural-looking maps, and noise-based approaches do 
not always yield results. The path to creating the resulting maps 
is entirely mathematical and does not apply methods for terrain 
transformation found in nature. Since the most significant soil 
degradation process can be simulated by the movement of water, 
the world of computer graphics has been dealing with producing 
appropriate solutions for nearly 30 years. The task poses 

challenges in various fields, from game development to 
filmmaking. When simulating water movement, as it is 
extremely resource-intensive, the idea of implementing it with 
graphical processors is very appealing. 

II. RELATED WORK 

The process of hydraulic erosion is difficult to describe 
mathematically. It depends on numerous dynamically changing 
parameters, making it challenging to achieve perfect results even 
with large-scale systems used at the state level for soil loss 
prediction (such as WEPP, RUSLE2, etc.). Furthermore, most 
equations describing the processes are mostly empirical. 
Comprehensive simulation of the event has been studied for over 
20 years, and as a result, several successful solutions have been 
provided by various researchers.  

In the following paragraphs we will take a look at previously 
applied methods for this type of simulation. 

A. Data Structure 

The selection of the data structure requires a compromise 
between accuracy and speed. The more data we store, the more 
accurate and computationally demanding the simulation 
becomes. Most programs choose between two structures: the 
heightmap (HM) and voxels. Voxels define triangles, typically 
used for fast rendering. Cubes can also be considered, here the 
advantages of using heightmaps become clearer. These two data 
structures are evaluated in [7]. 

The voxel approach results in a more accurate simulation 
because they can provide much more data/information about 
themselves and their environment. However, this comes at a 
cost. In exchange for a more accurate simulation, we get a 
significantly slower one, and the required storage space also 
increases substantially. Heightmaps are usually two-
dimensional matrices where each "cell" provides feedback on 
the data stored within it at the given coordinates. Assuming n 
bytes of data are stored in each cell, an HM of size 1024x1024 
requires n MB of storage, whereas using voxels, n 10243, 
meaning n GB will be needed. 

Furthermore, several methods effectively utilize the 
opportunities provided by HM [1, 5], such as the simplicity of 
parallelization with minimal overhead, low simulation speed 
without sacrificing realistic implementation. Initially, the 
simulation was divided into four elementary steps, later refined 
for accuracy [2] and further expanded [3]. The fundamental 
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principle of maintaining system stability while being able to 
execute these steps in any order remained unchanged. The 
sequence of steps begins with the appearance of water and ends 
with its evaporation. 

Each element of the HM stores data about its own 
coordinates and the state of the simulation. Consequently, the 
data structure allows for GPU parallelization without significant 
complications. 

B. Modeling Water and Erosion 

Water mobility is an integral part of the project, addressed 
by the Navier-Stokes equations in the mathematical world. 
These equations were processed [5] to be applicable for 
computer simulation. They were solved in multiple dimensions 
depending on the simulation's goals. The 3D representation 
allows for the natural formation of caves and underground 
structures. However, this is limited to maps with a low number 
of cells [11] and is highly resource-intensive. 

In contrast, 2D implementations already have low-cost 
computational solutions and implementations [4, 8]. Often, [5] 
applies the Shallow Water Modell (SWM) for 2-3D interactive 
processing of Navier Stokes equations. The model had certain 
constraints, such as assuming a grid-based HM data structure. In 
contrast, the SWM is perfectly suitable for simulating hydraulics 
on maps with a larger number of cells and is also applicable for 
GPU parallelization, as demonstrated by [2]. 

Another approach is presented in [1], where soil erosion is 
simulated through an interactive process. This system is called 
Smoothed Particle Hydrodynamics (SPH). The essence of the 
processing is to divide water and the surface into molecules but 
does not differentiate between them, rather moves the molecules 
using a so-called "donor-acceptor" system along with the water. 
However, this processing does not allow for the formation of 
three-dimensional geographical elements and does not make 
significant distinctions in computational demand compared to 
projects using the SPH. [1] is also implemented on the CPU, 
making the molecule-based approach unnecessarily complex for 
GPU processing. 

It is important to highlight the method presented in SWM [8] 
for moving water between cells. The so-called "pipe model" 
method connects the eight neighbors of a cell with a virtual pipe, 
which simplifies the determination of the amount of fluid 
leaving the cell and entering it, and more importantly, makes it 
easier to determine velocity vectors. [2] first parallelized the 
method on the GPU and simplified it by connecting virtual pipes 
only to the neighboring four cells. 

The implementation of erosion in almost all cases (except for 
example [1]) estimates the force exerted on the soil directly with 
a velocity vector and determines the amount of sediment that can 
be carried with the water, similar to events occurring in nature. 

C. Visualization 

The choice of data structure significantly affects 
visualization possibilities. Therefore, we discard voxel-based 
data storage and assume an HM-based structure from now on. 

[2] applies the multi-pass algorithm for visualization. The 
method passes two-dimensional textures to the GPU memory, 

then draws a quad parallel to the image space. Then, for each 
pixel of the quad, it calculates the amount of data needed to 
create the necessary geometric primitives later. This calculation 
is done by the "fragment shader," which is a phase of the 
OpenGL pipeline. Finally, the output data is written into a target 
element (these can be textures or render targets) used for the next 
such process. One advantage of this solution is that the process 
is much faster on GPU implementations and scales well with 
grid resolution. Cells located on the edges of the grid require 
special treatment. In this solution, the fragment shader 
determines if there is an extreme value at a given location, so 
there is no need for a fragmentation process. 

[3] works by stacking two-dimensional four-channel 
floating-point texture layers. These are attached to a single frame 
buffer object. It stores all associated simulation parameters in 
texel elements (which, like cells, are positioned at the same 
coordinates). Then, using the two buffers, it applies the ping-
pong method, defining one buffer as input and the other as 
output, swapping them after the calculation, and restarting. This 
implementation is done in a single fragment shader, which uses 
the OpenGL multiple render target function for visualization. 

There's also mention of ray tracing. Newer algorithms allow 
real-time implementation of this method and optimally utilize 
the capabilities of modern graphics cards. There are solutions 
excellently supports modern APIs with its processing and 
functions. 

For HM-matrix data structures, to simplify implementation, 
we can consider simpler alternatives that do not require GPU 
programming, such as Excel, which would allow for two-
dimensional representation with color coding. MATLAB is also 
noteworthy, as it would be able to visually represent a three-
dimensional plot made from our multidimensional array. 

III. SIMULATION MODEL 

The process to be simulated is broken down into components 
[3], where various formulas will be applied. The steps for 
calculating erosion are divided into five main parts, similar to 
processes occurring in nature: 

1) Water appears in some form. 

2) Simulation of water movement. 

3) Sediment uptake due to water movement. 

4) Movement of sediment in the water. 

5) Evaporation of water, deposition of sediment. 
 

Our model will apply discrete time steps to calculate the five 
main steps, where 𝑡 indicates the parameter's state at a given 
time, and Δ𝑡 represents the change in time for the simulation. 
After calculating the five steps, the next time step occurs (𝑡+Δ𝑡), 
and the process starts again. The simulation will always work 
with a fixed number of steps, requiring the program to be rerun 
for further simulation. For some of the equations presented 
below, we will need the different states of individual fields, so 
we will distinguish between states using subscripts 1,2, 3, …, 𝑛. 

As discussed earlier, our program will be based on SWM; 
therefore, we will use the HM data structure. Consequently, the 
simulated terrain will be built in a 2D matrix, where the elements 
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will be cells. Their positions will be denoted by the cell's (x, y) 
coordinates. 

Each cell contains data necessary for the logic's operation 
and information about its own state. These data will be regularly 
updated during the simulation. 𝑑𝑖(𝑥,𝑦) represents the water, 
while 𝑏𝑖(𝑥,𝑦) represents the height of the soil. 

A. Movement of Water 

The simulation of water movement in the literature presents 
similar approaches [1, 3]. We determine the water movement by 
combining the works of [3, 4], and the following equations are 
based on these works. In our simulation, the water height is 
increased by natural water sources (streams, rivers, etc.) and 
precipitation events. The precipitation event is described by the 
following equation: 

 d1(x,y) = dt(x,y) + Δt ⋅ rt(x,y) ⋅ Kr (1) 

In the above equation, 𝑑1 represents the water height stored 
in the given cell, 𝑟𝑡 is a locally determined value indicating the 
amount of precipitation received by the cell, and 𝐾𝑟 is a global 
parameter used for scaling rainfall. 

Next, we will discuss the flow of water between cells. We 
will implement the flow of water between cells using the PM 
adaptation used in [8], which has been successfully used for 
erosion simulation [4]. 

Each cell (x, y) has four virtual pipes through which it can 
communicate water with its neighbors. We only store the 
outflowing water quantity from the cell, denoted by 𝑓 = (𝐹𝑇, 𝐹𝐵, 
𝐹𝑅, 𝐹𝐿). The exchange of fluid between two cells is controlled 
by the pressure difference between them. The change in state of 
the upper neighbor is described as follows: 

𝐹𝑡+∆𝑡
𝑇 =  max(0, 𝐹𝑡

𝑇(x, y)  + ∆t · A
𝑔 ·∆ℎ𝑇(𝑥,𝑦)

𝑙
) (2) 

Where 𝐴 represents the cross-sectional area of the virtual 
pipe (in m²), 𝑔 is the gravitational constant, 𝑙 is the length of the 
virtual pipe (which is a constant 1 in our case), and ΔℎT(𝑥,𝑦) is 
the height difference between the cell and its upper neighbor. 

∆ℎ𝑇(𝑥, 𝑦)  =  𝑏𝑡(𝑥, 𝑦)  + 𝑑1(𝑥, 𝑦) − 𝑏𝑡(𝑥 − 1, 𝑦) −
𝑑1(𝑥 − 1, 𝑦)  (3) 

Communication with the other neighbors occurs similarly. 
However, there might be a problem with the quantity of water 
flowing out of the cell, as it might exceed the available amount. 
To avoid this, a variable 𝐾 is introduced to determine the amount 
that can be pumped out of the cell based on the amount of water 
stored in it. This step is discussed and justified in detail in [2]. 

K =  min(1,
𝑑1 𝑙𝑋𝑙𝑌 

(𝐹𝑇+𝐹𝐵+𝐹𝐿+𝐹𝑅) · ∆t
 )  (4) 

Where 𝑙𝑋 and 𝑙𝑌 represent the distance between cells on the 
map, in the x/y direction, respectively. The upper limit of the 
formed border is: 

𝐹𝑡+∆𝑡
𝑖 (x, y) = K · 𝐹𝑡+∆𝑡

𝑖 (x, y), i =  T, B, L, R  (5) 

Finally, the change in water is calculated with the inflow 
from neighboring cells (𝑓𝑖𝑛) and outflow to neighboring cells 
(𝑓𝑜𝑢𝑡): 

∆𝑊(𝑥, 𝑦) =  ∆𝑡 ∙ (∑ 𝑓𝑖𝑛 − ∑ 𝑓𝑜𝑢𝑡) =  ∆𝑡 ∙ (𝐹𝑡+∆𝑡
𝑅 (𝑥, 𝑦 + 1) +

𝐹𝑡+∆𝑡
𝐿 (𝑥, 𝑦 − 1) + 𝐹𝑡+∆𝑡

𝑇 (𝑥 + 1, 𝑦) + 𝐹𝑡+∆𝑡
𝐵 (𝑥 −

1, 𝑦) − ∑ 𝐹𝑡+∆𝑡
𝑖

𝑖=𝑇,𝐵,𝐿,𝑅 (𝑥, 𝑦))  (6) 

The water height in the cells is updated as follows: 

 

𝑑2(𝑥, 𝑦) = 𝑑1(𝑥, 𝑦) +
∆𝑊(𝑥,𝑦)

𝑙𝑋𝑙𝑌
  (7) 

It is also necessary to determine the velocity vector 𝑉, which is 
required to simulate erosion due to water pressure (in this study, 
only horizontal velocity is considered). This can be done by 
calculating the average flow of water passing through the cell. 
The water passing through cell (x, y) in the X direction: 

∆𝑉𝑥 =  
𝐹𝑅(𝑥−1,𝑦)−𝐹𝐿(𝑥,𝑦)+𝐹𝑅(𝑥,𝑦)−𝐹𝐿(𝑥+1,𝑦)

2
  (8) 

Similarly, the calculation is done in the Y (Δ𝑉𝑦ΔVy) 
direction. After the calculations, to evaluate the new state, we 
need to consider water evaporation. We introduce parameter 𝐾e 
into our simulation, which scales evaporation. 

𝑑𝑡+∆𝑡(𝑥, 𝑦) =  𝑑2(𝑥, 𝑦) ∙ (1 − 𝐾𝑒 ∙ ∆𝑡)  (13) 

With this, the calculation of the fifth step is completed, and 
the next iteration can begin. 

Due to the structure of the HM, we need to be careful with 
the boundaries, namely, what happens if one of the neighbors 
points outside the map, e.g., cell (0, 0). During the 
implementation of the program, we avoid water outflow from 
the map, in such events by treating the existing cells specially, 
where the appropriate 𝐹𝑖 value(s) store a constant value of: -∞ 
during calculations when encountering such a boundary value. 

B. Erosion Systems 

The effect of water on the ground causes a certain amount 
of material to detach, which is then carried away by the water. 
However, this alone is not sufficient. Water also needs an upper 
limit on the amount of material it can carry. We describe this 
upper limit with a simplified equation presented in [9]: 

𝐶(𝑥, 𝑦) =  𝐾𝑐 ∙ sin(𝛼(𝑥, 𝑦)) ∙ |𝑣̅(𝑥, 𝑦)|  (9) 

Where: 𝐶 (𝑥, 𝑦) describes the sediment carrying capacity of 
the water flowing in cell (x, y). 𝐾𝑐 is a global parameter that 
scales this value. α is the local slope angle, calculated as: 

α = cos−1(
𝑔𝑣̅̅ ̅̅ ∗ℎ𝑣̅̅̅̅

|𝑔𝑣̅̅ ̅̅ ̅|∗|ℎ𝑣|
)  (9a) 

Where: 𝑔𝑣 is the local gradient vector, ℎ𝑣 is the projection 
of 𝑔𝑣 onto the x, y plane. cos(α) is the scalar product divided 
by the product of the vectors' lengths 

However, a problem arises if the size of 𝛼α is quite low, as 
this makes the erosivity significant in places where the slope of 
the ground is nearly horizontal, unnecessarily consuming 
computational resources. To avoid this, we introduce 𝐶𝛼, a 
framework determined by the user. This will regulate the 
acceptability of the 𝛼α value. Then, if 𝐶 is greater than 𝑠s,  

 which represents the sediment stored in the water from the 
ground, we dissolve part of it in the water: 
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𝑏𝑡+∆𝑡 =  𝑏𝑡 − 𝐾𝑠(𝐶 − 𝑠𝑡)  

𝑠1 = 𝑠𝑡 + 𝐾𝑠(𝐶 − 𝑠𝑡)  (10) 

Where: 𝐾𝑠 is the dissolution coefficient, also a parameter 
set by the user, 𝑠1 is the quantity of sediment carried. 
Otherwise, if 𝐶 is smaller than 𝑠, their roles in equation (10) are 
swapped, and 𝐾𝑠 is replaced with 𝐾𝑑, the deposition 
coefficient, causing some of the carried sediment to deposit. 
However, this would not consider the law of water 
displacement, so to address this, we add the collected sediment 
to the water height: 

𝑑3 = 𝑑2 + ∆𝑡 ∙ 𝐾𝑠(𝐶 − 𝑠𝑡)  (10a) 

Conversely: 

𝑑3 = 𝑑2 − ∆𝑡 ∙ 𝐾𝑠(𝑠𝑡 − 𝐶)  (10b) 

After calculating the erosive processes, we calculate the 
movement of sediment using the advection equation: 

𝜕𝑠

𝜕𝑡
+ (𝑣̅ ∙ ∇𝑠) = 0  (11) 

We solve this equation using the method presented in [11]. 
We determine the new value of the cell 𝑣 (𝑢, 𝑣): 

𝑠𝑡+∆𝑡(𝑥, 𝑦) = 𝑠1(𝑥 − 𝑢 ∙ ∆𝑡, 𝑦 − 𝑣 ∙ ∆𝑡)  (12) 

If 𝑠1 were to fall outside the map, its value would be 
determined by linear interpolation from its four neighbors. 

IV. EXPERIMENTAL RESULTS 

When examining the measured time results, we take into 
account two main factors. The first is the configuration of the 
computer on which we execute the simulation. Consequently, 
the achieved results vary from one computer to another. The two 
most influential factors in our case are the CPU and GPU units. 
The results presented below were achieved on a thirteenth 
generation Intel(R) Core(TM) i5-13600K 3.50 GHz processor 
and a NVIDIA GeForce GTX 1050Ti graphics card released in 
2016. There is a significant generational and performance 
difference between the two devices, further outlining the 
outcome of parallelization. 

The other factor is the size of the map (see: Table I), on 
which erosion processes take place. This is responsible for the 
number of cells and consequently the number of threads that 
need to be launched. In this case, the dimensions of the map are 
multiples of thirty-two to fully harness GPU acceleration. Other 
simulation parameters have a strong impact on computational 
requirements, but they are documented for reproducibility. The 
program executes the appropriate sequence of steps 50 times, 
then displays the final result (Figure 1). The measurements in 
the table refer to the total number of cycles. Each metric was 
executed on the "cone" maps obtained from the same instance 
of the program. The simulation is primarily performed on the 
GPU, but the CPU runtime is also displayed as a reference value. 

 

 

Table. I: Measured simulation time. 

 

Based on the results, it is clear that thanks to parallelization, 
we can achieve nearly fourteen times acceleration. This value is 
particularly significant for high-resolution maps. The 
visualization process sometimes incurs almost the same cost as 
the simulation itself. However, it is important to note that this 
value represents the entire visualization process. It includes 
uploading data to the engine's memory twice, as we visualize not 
only the end but also the initial state. 

An advantage can be gained if we perform the generation 
without closing the program. This is because the initialization 
time of the Matlab engine can be ignored after the first run. 

The measured time and the size of the map are nearly directly 
proportional. Based on the obtained data, if we increase the 
number of cells fourfold, then the CPU simulation time stays 
within εC = 0.4969613 seconds and the GPU simulation time 
within εD = 0.8941916 seconds the time distanse from four 
times the previous measurement.  

Figure 1. shows the result of a simulation using our program. 

Fig. 1. Simulation result 

Comparing the results proves to be a complex task, as 
relevant literature distinguishes a wide spectrum of software and 
hardware differences. Time values measured in [5] are most 
compatible with ours for comparison, due to the similarity in the 
execution of the simulation and calculation steps. Ultimately, we 
achieved approximately threefold acceleration in the measured 
time values, but the significant hardware capacity difference 
between the two projects must be taken into account. 

 

Size of 

map 

∆t 

CPU(s) 

∆t 

GPU(s) 

∆t 

MAT(s) 

∆t 

SMAT(s) 

256x256 3.3678 0.7072 1.0313 4.3939 

512x512 12.4146 1.6418 2.8567 - 

1024x1024 51.1994 4.5739 5.1003 - 

2048x2048 198.3065 16.3993 11.1474 - 
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V. CONCLUSION AND FUTURE WORK 

In this paper, we have designed a simulation program aimed 
at simulating real physical phenomena. To achieve this, we 
investigated and applied numerous methods still used in 
computer graphics to this day [11]. We compared the SWM 
method with particle-based simulation tools and defined a 
Matlab-based visualization model against GPU pipelines and 
other two-dimensional methods. Furthermore, we examined 
agricultural applications to bring the simulation closer to nature 
in this mathematical manifestation. 

The implementation of the planned application has been 
documented component by component, and the parameters used 
for testing the operation have been provided to the readers. 

We tested the components of our program using both black- 
and white-box methods. During the tests, we ensured execution 
according to system requirements and validated input and output 
data. 

During the evaluation of the specified program 
implementation, we confirmed that the planned software is 
capable of quickly and efficiently mapping the process of 
hydraulic erosion. The user has access to numerous tools in the 
development process, allowing them to refine the execution 
according to their needs and thus providing exceptional 
versatility. 

When evaluating the final results, we confirmed the 
correctness of the operation and its suitability for creating maps 
that appear realistic. The planned application is successfully able 
to process matrix data structures with the parallelized 
implementation of the SWM. Our input interface is intuitive and 
guarantees the correctness of input data, while also allowing for 
easy expansion of the input data list. During visualization, we 
have full access to and interaction with the generated terrain. 

Furthermore, the program remains open to further 
development and optimization of computational processes and 
systems. Thermal erosion could be a potential focus on further 
development and re. 

 Heat/thermal erosion provides a perfect example of the 
opportunities offered by natural processes. The soil 
transformation process takes into account heat changes, which 
depend on the movement of the sun and the heat retention of the 
air. Such an implementation can be observed [12,13]. This 
natural phenomenon appears in numerous studied 
implementations, and a noticeable trend is the finer-grained state 
of the final result compared to tools operating purely on 
hydraulic principles. 

Additionally, there is the possibility of introducing layers 
mentioned in [6], where the erosion processes depend on the 
geological quality of a layer. Consequently, this allows for a 
more detailed exploration of erosion process properties. Here, 

expansion of functions performing erosion and the cell data 
structure would be required. 

Introducing custom types for individual soil layers is 
conceivable, storing information on the expected behavior 
during soil degradation processes or how they assist them. 
Functions could erode surfaces from top to bottom, and it's 
possible to replicate the decay and sliding of looser materials. 

Our current visualization method comes with strong 
limitations. Initiating a motor is time-consuming, and each 
visualization of a map occupies significant memory space. 
However, beyond these constraints, there are still untapped 
opportunities in leveraging Matlab tools comprehensively. 
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