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Abstract—This paper presents the results of a project 

simulating microbial communities using agent-based modeling. 

Bacteria are placed in a discrete space and make local decisions 

causing the colony to grow or shrink. To achieve this, the 

simulation tries to simulate as many agents and their decisions as 

possible. For this reason, bacteria operate according to a simple 

set of rules. Growth is governed by Blackman kinetics, which 

determines the biological functions of an agent based only on its 

glucose or sugar uptake. The accuracy of the simulation not only 

requires the biological processes of the agents to be carried out but 

tracking and representing the assigned bodies in a 3D 

environment. The presented model is implemented in C++ and the 

visuals are handled by Raylib. The simulation can simulate up to 

15000 bacteria with 30 FPS and achieves several life stages of 

bacterial colonies swarming, stagnation, and death. 

Keywords—Bacteria growth, Blackman’s kinetics, Bacteria 

colony, E. coli, Individual base simulation 

 

I. INTRODUCTION 

Bacteria are simple, micrometer-sized organisms, the most 
common cellular life form on Earth. They can colonise every 
possible habitat. Therefore it seems appropriate to construct 
ecological models in terms of individual cells and their 
behaviour. This paper introduces spatially explicit individual-
based modelling (IbM) to microbial ecology. The great 
potential of IbM lies in addressing the following question: is 
it possible to create amacroscopic world from data on 
microscopic entities?  

Bacteria is the basis of the simulation. At the very 
beginning, we are at a crossroads, if we can achieve the 
desired result by considering the whole colony as a large 
uniform biomass, then we can describe the population 
behavior by differential equations, but this is inaccurate. 
However, if more precise calculations are needed, all bacteria 
must be treated individually. This can be solved by the agent-
based modeling discussed later. 

The bacteria will be the agents. There are two different 
logics for determining the movement and behavior of the 
individuals: 

• the first approach is to consider the physical 
forces acting on the agents at run-time, 

• or the second is to create a predefined policy that 
the agents decide on each cycle and act 
accordingly. 

 The interactions between agents can be described by 
potential functions ("Newton's method") or by behavioral 
rules ("Reynolds' method"). When it comes to choosing 
between Newton's and Reynolds' methods, the following 
should be considered:  

• Newton calculates in terms of potential forces. 
More specifically, in potential functions, the 
forces between each pair of agents are calculated 

and after summing them, their resultant will 
determine the behavior of the agent.  

• Reynolds, on the other hand, calculates on the 
basis of a pre-specified rule. Potentials are 
expensive to calculate. In many cases, it is 
sufficient to describe the behavior of an agent in 
terms of a rule. 

Regardless of which method is chosen, the computations 
are limited only by imagination, e.g. agents can be endowed 
with memory and make decisions based on their experience in 
a given situation. The rule-based system includes cellular 
automata (cellular automata), but this is beyond the scope of 
my research, so this paper will not deal with it [1, 2].  

The medium is the substance where the agents (bacteria) 
will be located. Here again, the question arises whether the 
implementation of the medium is necessary, or whether it is 
negligible in simpler models and can be considered a vacuum. 
One can also wedge in here one of the most famous agent-
based studies, where Reynolds wanted to simulate birds. The 
model used there did not explicitly define the medium either, 
but only considered the forces acting on the agents (birds). The 
objects to be avoided are given a repulsive potential, thus 
avoiding collisions [3]. Otherwise, if it is necessary to specify 
the more important elements of the medium, we can specify 
them as the force acting on the agents or other chemical 
particles. 

To store the agent's positions in a 3D space, the approach 
is simple; it's all about dividing the space into areas of equal 
size. These areas can be thought of as cells. In the simulation, 
all objects are associated with the cell they overlap. If the cells 
are large enough, it can be said that an object can only collide 
with other objects that are in the same cell as itself or its 
neighbors. This makes it easy to narrow down the objects that 
should be tested in the narrow phase. Of course, there are 
exceptions, such as when an object is located exactly on the 
border of two cells, in which case it is stored in the cell where 
its center is located. Another approach is that if the size of a 
cell is the same as the size of the objects and the objects are 
not very different in size, then we only need to check around 
the adjacent cells to see if there are any elements in them [4]. 

Cells can contain either an array or, in fact, any data structure, 
be it a linked list or even a hash map, allowing multiple 
bacteria to be counted in a single cell. Whatever size is chosen, 
it is always worth paying special attention to the size of the 
cells, as this is one of the most important factors when we 
consider the speed of the data structure [4]. 

II. RELATED WORKS 

A. BacSim 

BacSim is based on an individual-base modeling 
approach, i.e. it uses an agent-based approach to model 
bacteria, more specifically the bacterium Escherichia coli. The 
simulation focuses on growth from a single E coli cell to a 
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whole colony. The simulation is written in object-oriented 
Objective-C. 

Based on the Gecko ecological simulation, it is built using 
the Swarm toolkit multi-agent modelling software. The model 
used here describes the bacterial substrate uptake, 
metabolism, division and degradation upon death. This allows 
the model to be easily adapted to model other species. The 
model works with 8 parameters. From these parameters: 
maximum substrate uptake, initial volume and the limiting 
weight of division at bacterial emergence are obtained from a 
normally distributed random generator. The remaining 
parameters are derived from the parent. The simulation 
simulates the space as a finite 2D grid. Diffusion is performed 
using it. Each lattice has a separate nutrient volume, so it tries 
to model the heterogeneous environment. Diffusion smooths 
out the substrate differences between cells at each run of the 
program cycle  ensuring that the bacteria do not consume the 
nutrients in the cells too quickly. Our method uses a Quadtree 
data structure to partition the space to optimize the physical 
engine. Interestingly, for each agent, the largest square that 
can be placed in the body of the agent circle is counted 
separately, as this was used to simplify the substrate weight to 
volume calculations. The dry matter content of cells 
determines their growth. Cell mass determines the maximum 
substrate uptake. After uptake, the amount of energy required 
to sustain the uptake is subtracted from the substrate taken up, 
and only the remaining substrate is added to the cell mass. The 
uptake is based on the Michaelis-Menten equation [5]. 

Division is also determined by the dry matter content of 
the cells. Division results in two cells of nearly equal mass. 
Division in this model is instantaneous. A colony, also known 
as a biofilm, grows uniformly by shifting from one agent to 
another during division until one agent covers the other [5]. 

B. INDISIM 

 IDIMSIM, the INDividual DIScrete SiMulation program, 
was published by the MOSHIBO research group. This 
approach is also agent-based, but instead of looking at growth, 
it looks at the so-called lag phase. This research, unlike 
BacSim, does not use Monod kinetics but Blackman kinetics 
to describe bacterial growth [6]. 

 Blackman kinetics was published by Blackman F.F. in 
1905. It is similar to the Monod kinetics used by BacSim. Here 
again, growth at low substrate concentrations depends on the 
substrate, while at high concentrations, growth is limited by 
the nutrient values in the substrate. In microbiology, it is now 
accepted that Blackman kinetics is not accurate and is 
therefore little used, but INDISIM's agent-based model has 
been shown to give better results than Monod kinetics. A 
particularly interesting feature of the simulation is that it is a 
state-free simulation, as mentioned above, i.e. it does not 
capture the state of a step but calculates it for each step using 
the elapsed time and initial parameters. Accordingly, no 
physical bodies or collision handling are used here, as each 
aspect of the colony, i.e. the position of the agents, is described 
by a function. Nutrient uptake is described using Brownian 
motion. Brownian motion is nothing more than, per unit of 
time, a Gaussian distribution randomly determining their 
position. In this way, it is possible to model substrate diffusion 
in a whole-life manner. Since the denser the substrate 
concentration, the more the molecules collide, the less 
substrate they have, the greater distance they can travel 
without colliding so that molecules migrate from the cell with 

the denser concentration to the cell with the less dense 
concentration [6].  

III. METOLOGY 

A. Diffusion 

The diffusion is based on Fick's law. We consider the 
substrate difference between two cells, denoted by delta ∆cs. 
The distance between the two cells is denoted by d. The flux 
between the two cells is defined by Js. This gives Fick's law 

𝐽𝑠 = −𝐷𝑠 ∗
△ 𝐶𝑠

𝑑
 

B. Substrate 

 The space is located on a 3D plane. This plane is divided 
into cells. These cells are counted as a 3D vector. Each 
element contains only the concentration of the substrate. 
These cells will be used to simulate diffusion. The cells also 
play a role in substrate uptake. The bacteria will only take up 
all the substrate from the cell in which their center is located. 
The space is finite, so the colony can only grow up to a certain 
limit.   

C. Plane 

 These cells are represented by objects, which can store 
pointers to specific objects, thus avoiding copying the entire 
object from one cell to another when deleting, adding, or just 
smoothly changing position.  

D. Growth kinetics 

 The Blackman kinematics was chosen for its simplicity. It 
is also important to point out that these kinematics are 
interpreted separately for each agent. The agents are stored in 
a vector, as C++ can cache them quite nicely, so it is possible 
to quickly traverse the array and perform operations on them. 

E. Bacteria movement 

The bacteria do not move on their own. At each iteration of 
the simulation, there comes a point when, after growth and 
division, the bacteria locally calculate all the overlap and then 
shifting the opposite direction because if we push the agents 
away from each other by the total overlap, we just push them 
into each other, to avoid this, you break the shifts into smaller 
steps and this trick allows you to handle overlaps in a much 
more resource-efficient way. 

F. Uptake 

 For each bacteria in a program cycle, its maximum uptake 
differs. With the mechanistic approach, an agent takes up 
substrate depending on its weight, but this means that in more 
abundant situations, it would take up too much nutrient. At 
each step, the value that the bacterium is allowed to take up is 
compared with the maximum value that it can take up, and 
then the smaller value is allowed to be taken, denoted by U. 
The uptake at each step is calculated using the following 
equation: Umax = Z * m * a, where Z is a random value 
obtained at the time the agent is created.  The mass of the 
bacteria is m. The value of a depends on the shape of the 
bacterium; in this simulation, we consider the agents as 
spheres, hence a = 2/3 [6]. 

G. Metabolism 

 The metabolism of the bacterium converts the ingested 
substrate into biomass and end products, but it cannot convert 
all the ingested nutrients into mass in one go, only at a certain 
efficiency, which the constant Y will provide. 
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 m = (m + (U - mI) Y), where U is the value taken up at a given 
time step, mI = m * I, where m is the weight and I is the unit 
of maintenance energy [6]. The maintenance reaction also 
generates a final product from biomass. It is also discharged, 
which is not considered from any point of view. The 
maintenance is also adjusted to the amount of dry matter. 

H. Cell lysis 

 If it is not possible to cover maintenance from the substrate 
we take in, starvation will reduce bacterial cell numbers.  The 
cells die when their biomass falls below a certain level. After 
death, they revert back to substrate. This allows some 
members of a starving colony to survive, grow and even divide 
under less than ideal conditions. 

I.  Cell division 

 A certain weight limit must be reached to initiate the 
division. Hence, there is one important parameter for the 
division, and that is the minimum division weight, denoted by 
(mR,min). The division occurs immediately; when the agent 
reaches the appropriate weight, it is immediately divided. 
Since the substrate uptake is not the same, and therefore the 
growth rate is not the same, the weights of the two agents 
produced at the time of division need not be considered 
separately since they will be different by default; only the 
weights of the initial bacteria in the simulation need to be 
determined. 

J. Uniform Grid 

 The grid requires to pass in the constructor a lowerbound 
and an upperbound, which are Vector3D types that contain x, 
y and z coordinates. It also needs to specify the dimensions 
(Vector3D), which determines how many cells should be 
placed on the given axis in different dimensions of the space. 
Finally, maxObjects, which is an integer type, is needed to 
preallocate the maximum size needed for staring all agents. 
This class is responsible for storing all the agents and tracking 
their spatial movement. The agents themselves are stored in a 
separate vector. This vector is initialized at program startup, 
and its reserved (site_t amount) method allows to reserve 
enough space in advance to store the maximum amount of 
bacteria without having to reposition itself in memory. The 
other data structure is a 3D vector that stores GridCells. A 
GridCell contains only one vector, which is needed to store 
the objects it contains. It is important to emphasize that only 
pointers are stored here, so you only need to change what the 
pointer points to when updating agents.  

 The most important task of UnifromGrid and other space-
division data structures is to quickly find all nearby neighbors 
of a given element. Naturally, the efficiency depends largely 
on the size of the search space and spatial cells. In this case, 
for n-body simulations, it is most optimal to set the cell to 
twice the radius of an agent. UnifromGrid is not only popular 
for its ease of implementation but also for its O(1) search in 
ideal cases. In many cases, it is necessary to use a hash 
function, but in this case, with a little spatial geometry, you 
can get around this and avoid hash collisions. The function can 
be used to assign any coordinate of the space to a given cell 
(Fig. 1) 

Vector3D Grid::_getCellIndex(const Vector3D& position) 
{ 
    float x = baciUtil::sat((position.x - _Lowerbound.x) / (_Upperbound.x - 
_Lowerbound.x)); 
    float y = baciUtil::sat((position.y - _Lowerbound.y) / (_Upperbound.y - 
_Lowerbound.y)); 
    float z = baciUtil::sat((position.z - _Lowerbound.z) / (_Upperbound.z - 
_Lowerbound.z)); 
 
    float xIndex = std::floor(x * (_dimensions[0] - 1)); 
    float yIndex = std::floor(y * (_dimensions[1] - 1)); 
    float zIndex = std::floor(z * (_dimensions[2] - 1)); 
 
    Vector3D ret = { xIndex , yIndex, zIndex }; 
    return ret; 
} 

 

Fig. 1. Function to assign space coordinate to a given cell 

 The input parameter of the function is a position. From the 
position, subtract the lower boundary of the space and divide 
it by the distance of the space or the difference between the 
upper and lower boundaries of the space. The resulting value 
is given to the sat function. Saturation is a mathematical 
function that does nothing more than ensure that the given 
value is between 0 and 1. Finally, it is multiplied by the 
number of cells in that dimension. This ensures that the search 
is O(1). Unfortunately, of course, this applies to the cell, we 
still have to search for the given element in its corresponding 
GridCell. 

K. Grid Update 

 As the colony grows, so do the spatial positions of its 
branches. Updating the position means removing the agent 
and reinserting it into the Grid, which is costly and should only 
be used when necessary. To ensure this, once an agent is 
placed, it saves the calculated cell coordinates. In the case of 
an update, when the agent is assigned, the corresponding cell 
should first be recalculated and only updated if it does not 
match the previous cell. 

L. Neighbors search 

 This is the most important function of the UniformGrid. 
The function expects an agent and a search distance. Subtract 
half of the search distance from the agent position; this will be 
the lower bound, and add half of the search distance; this will 
be the upper bound of the search area. We assign the spatial 
cells to these two points using the method already described. 
This is convenient because in this way, we can walk all the 
cells between the two points in a nested loop and check the 
agents in them to see if they overlap with the agent specified 
in the function parameter; if so, then the pointer to that agent 
stored in the grid is placed in a vector and returned as the result 
of the function. 

IV. EVALUATION 

 As already mentioned, the point of the simulation [7] was 
to simulate as many agents as possible in real time [8,9]. The 
implementation performed better than expected, but this is due 
to the optimization of C++ O2. The numbers are visualized in 
Fig. 2. 
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Fig. 2. The vertical axis represents the number of agents. 
The horizontal axis represents the number of frames.  

The Grid is on average 15x faster than the naive approach. 
As a point: 

• 100   agents: 780/440 = 1.77x 

• 1000 agents: 498/60 = 8.3x 

• 2000 agents: 173/30 = 5.77x  

• 5000 agents: 103/5 = 20.6x 

• 10000 agents: 46/1 = 46x 

• 15000 agents: 29/1 = 29x 

 The life stages of the colony are visible. The initial 
swarming is followed by stagnation and then the death of the 
colony. These processes can be seen in Fig. 3. 

 

Fig. 3. Number of agents 

Initially, as long as the maximum substrate uptake is 
abundantly available for all agents, we can see that they are in 
the swarming stage. At about 10,000 agents, we reach the 
point where not all agents can take up maximum glucose per 
round, but the decline is not yet apparent because there is still 
room for expansion, where there is still plenty of glucose in 
the cells and so the graph does not yet show internal death, 
because there is still much more division than cell death. And 
they run out of new cells are about 15,000 agents. 

Fig. 4. The stage of swarming, here you can see that there 
is uniform growth in all directions, because the agents do 
not yet differ that much form the initial values like weight 
and maximum substrate uptake etc. 

 

Fig. 5. The colony started on the left side and over time 
spread to the right side, where there was still substrate. 
Notice that the left side is now only fed by the cell lysate 
with the remaining bacilli. But the growth on the right side 
is still greater than the death on the left. 

Fig. 6. Here we have the agents at the end of stagnation 
and the onset of decline. 
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V. CONCLUSIONS  

 The simulation can simulate 15.000 branches at 30 frames 
per second, and the three stages of the colony can be observed 
in the simulation. The simulation is a good example that you 
don't need a very complex data structure, often, a simple data 
structure can do a lot if you know what is behind it. Uniform 
Grid ensured that when looking for neighbors, with the naive 
approach we had to look at an average of 224 neighbors per 
10,000 agents, while with Grid we only had to look at 7. We 
had to break the collisions into smaller steps because if the 
bacteria are pushed away from each other by the overlapping 
full vector space, they will push into each other.  

 It would be worthwhile to make the model parallel. For 
example, diffusion takes a lot of time and resources. GPU 
could help with this, and uniform grids already have been 
implemented with CUDA. The substrate could be 
supplemented with more nutrients like Nitrate and Sodium. 
Together with this, we would then be able to simulate more 
types of bacteria. The graphical library supports user interface 
design. Implementing a proper user interface could also be a 
nice upgrade. 
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