2023 IEEE 23rd International Symposium on Computational Intelligence and Informatics (CINTI) | 979-8-3503-4294-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/CINTI59972.2023.10381973

CINTI 2023 « IEEE 23rd International Symposium on Computational Intelligence and Informatics « November 20-22, 2023 « Budapest, Hungary

Bacteria Colony Simulation

Richard William Polényi
John von Neumann Faculty of Informatics, Obuda University, Hungary
richard.polonyi@stud.uni-obuda.hu

Abstract—This paper presents the results of a project
simulating microbial communities using agent-based modeling.
Bacteria are placed in a discrete space and make local decisions
causing the colony to grow or shrink. To achieve this, the
simulation tries to simulate as many agents and their decisions as
possible. For this reason, bacteria operate according to a simple
set of rules. Growth is governed by Blackman kinetics, which
determines the biological functions of an agent based only on its
glucose or sugar uptake. The accuracy of the simulation not only
requires the biological processes of the agents to be carried out but
tracking and representing the assigned bodies in a 3D
environment. The presented model is implemented in C++ and the
visuals are handled by Raylib. The simulation can simulate up to
15000 bacteria with 30 FPS and achieves several life stages of
bacterial colonies swarming, stagnation, and death.

Keywords—Bacteria growth, Blackman’s kinetics, Bacteria
colony, E. coli, Individual base simulation

1. INTRODUCTION

Bacteria are simple, micrometer-sized organisms, the most
common cellular life form on Earth. They can colonise every
possible habitat. Therefore it seems appropriate to construct
ecological models in terms of individual cells and their
behaviour. This paper introduces spatially explicit individual-
based modelling (IbM) to microbial ecology. The great
potential of IbM lies in addressing the following question: is
it possible to create amacroscopic world from data on
microscopic entities?

Bacteria is the basis of the simulation. At the very
beginning, we are at a crossroads, if we can achieve the
desired result by considering the whole colony as a large
uniform biomass, then we can describe the population
behavior by differential equations, but this is inaccurate.
However, if more precise calculations are needed, all bacteria
must be treated individually. This can be solved by the agent-
based modeling discussed later.

The bacteria will be the agents. There are two different
logics for determining the movement and behavior of the
individuals:

e the first approach is to consider the physical
forces acting on the agents at run-time,

e orthe second is to create a predefined policy that
the agents decide on each cycle and act
accordingly.

The interactions between agents can be described by
potential functions ("Newton's method") or by behavioral
rules ("Reynolds' method"). When it comes to choosing
between Newton's and Reynolds' methods, the following
should be considered:

e Newton calculates in terms of potential forces.
More specifically, in potential functions, the
forces between each pair of agents are calculated

979-8-3503-4294-9/23/$31.00 ©2023 IEEE

Sandor Szénasi
John von Neumann Faculty of Informatics, Obuda University, Hungary
Faculty of Economics and Informatics, J. Selye University, Slovakia
szenasi.sandor@nik.uni-obuda.hu, szenasis@ujs.sk

and after summing them, their resultant will
determine the behavior of the agent.

e Reynolds, on the other hand, calculates on the
basis of a pre-specified rule. Potentials are
expensive to calculate. In many cases, it is
sufficient to describe the behavior of an agent in
terms of a rule.

Regardless of which method is chosen, the computations
are limited only by imagination, e.g. agents can be endowed
with memory and make decisions based on their experience in
a given situation. The rule-based system includes cellular
automata (cellular automata), but this is beyond the scope of
my research, so this paper will not deal with it [1, 2].

The medium is the substance where the agents (bacteria)
will be located. Here again, the question arises whether the
implementation of the medium is necessary, or whether it is
negligible in simpler models and can be considered a vacuum.
One can also wedge in here one of the most famous agent-
based studies, where Reynolds wanted to simulate birds. The
model used there did not explicitly define the medium either,
but only considered the forces acting on the agents (birds). The
objects to be avoided are given a repulsive potential, thus
avoiding collisions [3]. Otherwise, if it is necessary to specify
the more important elements of the medium, we can specify
them as the force acting on the agents or other chemical
particles.

To store the agent's positions in a 3D space, the approach
is simple; it's all about dividing the space into areas of equal
size. These areas can be thought of as cells. In the simulation,
all objects are associated with the cell they overlap. If the cells
are large enough, it can be said that an object can only collide
with other objects that are in the same cell as itself or its
neighbors. This makes it easy to narrow down the objects that
should be tested in the narrow phase. Of course, there are
exceptions, such as when an object is located exactly on the
border of two cells, in which case it is stored in the cell where
its center is located. Another approach is that if the size of a
cell is the same as the size of the objects and the objects are
not very different in size, then we only need to check around
the adjacent cells to see if there are any elements in them [4].

Cells can contain either an array or, in fact, any data structure,
be it a linked list or even a hash map, allowing multiple
bacteria to be counted in a single cell. Whatever size is chosen,
it is always worth paying special attention to the size of the
cells, as this is one of the most important factors when we
consider the speed of the data structure [4].

II. RELATED WORKS

A. BacSim

BacSim is based on an individual-base modeling
approach, i.e. it uses an agent-based approach to model
bacteria, more specifically the bacterium Escherichia coli. The
simulation focuses on growth from a single E coli cell to a

000249

R. W. Polényi and S. Szénasi * Bacteria Colony Simulation

whole colony. The simulation is written in object-oriented
Objective-C.

Based on the Gecko ecological simulation, it is built using
the Swarm toolkit multi-agent modelling software. The model
used here describes the bacterial substrate uptake,
metabolism, division and degradation upon death. This allows
the model to be easily adapted to model other species. The
model works with 8 parameters. From these parameters:
maximum substrate uptake, initial volume and the limiting
weight of division at bacterial emergence are obtained from a
normally distributed random generator. The remaining
parameters are derived from the parent. The simulation
simulates the space as a finite 2D grid. Diffusion is performed
using it. Each lattice has a separate nutrient volume, so it tries
to model the heterogeneous environment. Diffusion smooths
out the substrate differences between cells at each run of the
program cycle ensuring that the bacteria do not consume the
nutrients in the cells too quickly. Our method uses a Quadtree
data structure to partition the space to optimize the physical
engine. Interestingly, for each agent, the largest square that
can be placed in the body of the agent circle is counted
separately, as this was used to simplify the substrate weight to
volume calculations. The dry matter content of cells
determines their growth. Cell mass determines the maximum
substrate uptake. After uptake, the amount of energy required
to sustain the uptake is subtracted from the substrate taken up,
and only the remaining substrate is added to the cell mass. The
uptake is based on the Michaelis-Menten equation [5].

Division is also determined by the dry matter content of
the cells. Division results in two cells of nearly equal mass.
Division in this model is instantaneous. A colony, also known
as a biofilm, grows uniformly by shifting from one agent to
another during division until one agent covers the other [5].

B. INDISIM

IDIMSIM, the INDividual DIScrete SiMulation program,
was published by the MOSHIBO research group. This
approach is also agent-based, but instead of looking at growth,
it looks at the so-called lag phase. This research, unlike
BacSim, does not use Monod kinetics but Blackman kinetics
to describe bacterial growth [6].

Blackman kinetics was published by Blackman F.F. in
1905. Tt is similar to the Monod kinetics used by BacSim. Here
again, growth at low substrate concentrations depends on the
substrate, while at high concentrations, growth is limited by
the nutrient values in the substrate. In microbiology, it is now
accepted that Blackman kinetics is not accurate and is
therefore little used, but INDISIM's agent-based model has
been shown to give better results than Monod kinetics. A
particularly interesting feature of the simulation is that it is a
state-free simulation, as mentioned above, i.e. it does not
capture the state of a step but calculates it for each step using
the elapsed time and initial parameters. Accordingly, no
physical bodies or collision handling are used here, as each
aspect of the colony, i.e. the position of the agents, is described
by a function. Nutrient uptake is described using Brownian
motion. Brownian motion is nothing more than, per unit of
time, a Gaussian distribution randomly determining their
position. In this way, it is possible to model substrate diffusion
in a whole-life manner. Since the denser the substrate
concentration, the more the molecules collide, the less
substrate they have, the greater distance they can travel
without colliding so that molecules migrate from the cell with

the denser concentration to the cell with the less dense
concentration [6].

III. METOLOGY

A. Diffusion

The diffusion is based on Fick's law. We consider the
substrate difference between two cells, denoted by delta Acs.
The distance between the two cells is denoted by d. The flux
between the two cells is defined by Js. This gives Fick's law

ACs

Js =—Ds *

B. Substrate

The space is located on a 3D plane. This plane is divided
into cells. These cells are counted as a 3D vector. Each
element contains only the concentration of the substrate.
These cells will be used to simulate diffusion. The cells also
play a role in substrate uptake. The bacteria will only take up
all the substrate from the cell in which their center is located.
The space is finite, so the colony can only grow up to a certain
limit.

C. Plane

These cells are represented by objects, which can store
pointers to specific objects, thus avoiding copying the entire
object from one cell to another when deleting, adding, or just
smoothly changing position.

D. Growth kinetics

The Blackman kinematics was chosen for its simplicity. It
is also important to point out that these kinematics are
interpreted separately for each agent. The agents are stored in
a vector, as C++ can cache them quite nicely, so it is possible
to quickly traverse the array and perform operations on them.

E. Bacteria movement

The bacteria do not move on their own. At each iteration of
the simulation, there comes a point when, after growth and
division, the bacteria locally calculate all the overlap and then
shifting the opposite direction because if we push the agents
away from each other by the total overlap, we just push them
into each other, to avoid this, you break the shifts into smaller
steps and this trick allows you to handle overlaps in a much
more resource-efficient way.

F. Uptake

For each bacteria in a program cycle, its maximum uptake
differs. With the mechanistic approach, an agent takes up
substrate depending on its weight, but this means that in more
abundant situations, it would take up too much nutrient. At
each step, the value that the bacterium is allowed to take up is
compared with the maximum value that it can take up, and
then the smaller value is allowed to be taken, denoted by U.
The uptake at each step is calculated using the following
equation: Umax = Z * m * a, where Z is a random value
obtained at the time the agent is created. The mass of the
bacteria is m. The value of a depends on the shape of the
bacterium; in this simulation, we consider the agents as
spheres, hence a = 2/3 [6].

G. Metabolism

The metabolism of the bacterium converts the ingested
substrate into biomass and end products, but it cannot convert
all the ingested nutrients into mass in one go, only at a certain
efficiency, which the constant Y will provide.

000250

CINTI 2023 « IEEE 23rd International Symposium on Computational Intelligence and Informatics « November 20-22, 2023 « Budapest, Hungary

m = (m + (U-ml) Y), where U is the value taken up at a given

time step, ml = m * I, where m is the weight and / is the unit
of maintenance energy [6]. The maintenance reaction also
generates a final product from biomass. It is also discharged,
which is not considered from any point of view. The
maintenance is also adjusted to the amount of dry matter.

H. Cell lysis

Ifit is not possible to cover maintenance from the substrate
we take in, starvation will reduce bacterial cell numbers. The
cells die when their biomass falls below a certain level. After
death, they revert back to substrate. This allows some
members of a starving colony to survive, grow and even divide
under less than ideal conditions.

1. Cell division

A certain weight limit must be reached to initiate the
division. Hence, there is one important parameter for the
division, and that is the minimum division weight, denoted by
(mR,min). The division occurs immediately; when the agent
reaches the appropriate weight, it is immediately divided.
Since the substrate uptake is not the same, and therefore the
growth rate is not the same, the weights of the two agents
produced at the time of division need not be considered
separately since they will be different by default; only the
weights of the initial bacteria in the simulation need to be
determined.

J. Uniform Grid

The grid requires to pass in the constructor a lowerbound
and an upperbound, which are Vector3D types that contain x,
y and z coordinates. It also needs to specify the dimensions
(Vector3D), which determines how many cells should be
placed on the given axis in different dimensions of the space.
Finally, maxObjects, which is an integer type, is needed to
preallocate the maximum size needed for staring all agents.
This class is responsible for storing all the agents and tracking
their spatial movement. The agents themselves are stored in a
separate vector. This vector is initialized at program startup,
and its reserved (site ¢ amount) method allows to reserve
enough space in advance to store the maximum amount of
bacteria without having to reposition itself in memory. The
other data structure is a 3D vector that stores GridCells. A
GridCell contains only one vector, which is needed to store
the objects it contains. It is important to emphasize that only
pointers are stored here, so you only need to change what the
pointer points to when updating agents.

The most important task of UnifromGrid and other space-
division data structures is to quickly find all nearby neighbors
of a given element. Naturally, the efficiency depends largely
on the size of the search space and spatial cells. In this case,
for n-body simulations, it is most optimal to set the cell to
twice the radius of an agent. UnifromGrid is not only popular
for its ease of implementation but also for its O(1) search in
ideal cases. In many cases, it is necessary to use a hash
function, but in this case, with a little spatial geometry, you
can get around this and avoid hash collisions. The function can
be used to assign any coordinate of the space to a given cell

(Fig. 1)

Vector3D Grid::_getCellIndex(const Vector3D& position)

float x = baciUtil::sat((position.x - _Lowerbound.x) / (_Upperbound.x -
_Lowerbound.x));

float y = baciUtil::sat((position.y - _Lowerbound.y) / (_Upperbound.y -
_Lowerbound.y));

float z = baciUtil::sat((position.z - _Lowerbound.z) / (_Upperbound.z -
_Lowerbound.z));

float xIndex
float yIndex
float zIndex

std: :floor(x * (_dimensions[0] - 1));
std: :floor(y * (_dimensions[1] - 1));
std::floor(z * (_dimensions[2] - 1));

Vector3D ret = { xIndex , yIndex, zIndex };
return ret;

Fig. 1. Function to assign space coordinate to a given cell

The input parameter of the function is a position. From the
position, subtract the lower boundary of the space and divide
it by the distance of the space or the difference between the
upper and lower boundaries of the space. The resulting value
is given to the sat function. Saturation is a mathematical
function that does nothing more than ensure that the given
value is between 0 and 1. Finally, it is multiplied by the
number of cells in that dimension. This ensures that the search
is O(1). Unfortunately, of course, this applies to the cell, we
still have to search for the given element in its corresponding
GridCell.

K. Grid Update

As the colony grows, so do the spatial positions of its
branches. Updating the position means removing the agent
and reinserting it into the Grid, which is costly and should only
be used when necessary. To ensure this, once an agent is
placed, it saves the calculated cell coordinates. In the case of
an update, when the agent is assigned, the corresponding cell
should first be recalculated and only updated if it does not
match the previous cell.

L. Neighbors search

This is the most important function of the UniformGrid.
The function expects an agent and a search distance. Subtract
half of the search distance from the agent position; this will be
the lower bound, and add half of the search distance; this will
be the upper bound of the search area. We assign the spatial
cells to these two points using the method already described.
This is convenient because in this way, we can walk all the
cells between the two points in a nested loop and check the
agents in them to see if they overlap with the agent specified
in the function parameter; if so, then the pointer to that agent
stored in the grid is placed in a vector and returned as the result
of the function.

IV. EVALUATION

As already mentioned, the point of the simulation [7] was
to simulate as many agents as possible in real time [8,9]. The
implementation performed better than expected, but this is due
to the optimization of C++ O2. The numbers are visualized in
Fig. 2.

000251

R. W. Polényi and S. Szénasi * Bacteria Colony Simulation

Back BB
15000 mljg
10000 it 46
'g 5000 |t 103 M Brute force
C,E 2000 MO 173 Spatial Grid

1000 el — 498
100 A0 780

0 200 400 600 800 1000

Fig. 2. The vertical axis represents the number of agents.
The horizontal axis represents the number of frames.

The Grid is on average 15x faster than the naive approach.
As a point:

e 100 agents: 780/440 =1.77x

Fig. 4. The stage of swarming, here you can see that there

e 1000 agents: 498/60 = 8.3x is uniform growth in all directions, because the agents do
not yet differ that much form the initial values like weight

e 2000 agents: 173/30 = 5.77x and maximum substrate uptake etc.

e 5000 agents: 103/5 =20.6x FedEhe

e 10000 agents: 46/1 = 46x
e 15000 agents: 29/1 =29x

The life stages of the colony are visible. The initial
swarming is followed by stagnation and then the death of the
colony. These processes can be seen in Fig. 3.

30000
25000
20000

15000

10000

Fig. 5. The colony started on the left side and over time
spread to the right side, where there was still substrate.
Notice that the left side is now only fed by the cell lysate
with the remaining bacilli. But the growth on the right side
is still greater than the death on the lefi.
Fig. 3. Number of agents 30 FeS :

Baci: 12040

5000

e sUbstrate e agents

Initially, as long as the maximum substrate uptake is
abundantly available for all agents, we can see that they are in
the swarming stage. At about 10,000 agents, we reach the
point where not all agents can take up maximum glucose per
round, but the decline is not yet apparent because there is still
room for expansion, where there is still plenty of glucose in
the cells and so the graph does not yet show internal death,
because there is still much more division than cell death. And
they run out of new cells are about 15,000 agents.

Fig. 6. Here we have the agents at the end of stagnation
and the onset of decline.

000252

CINTI 2023 « IEEE 23rd International Symposium on Computational Intelligence and Informatics « November 20-22, 2023 « Budapest, Hungary

V. CONCLUSIONS

The simulation can simulate 15.000 branches at 30 frames
per second, and the three stages of the colony can be observed
in the simulation. The simulation is a good example that you
don't need a very complex data structure, often, a simple data
structure can do a lot if you know what is behind it. Uniform
Grid ensured that when looking for neighbors, with the naive
approach we had to look at an average of 224 neighbors per
10,000 agents, while with Grid we only had to look at 7. We
had to break the collisions into smaller steps because if the
bacteria are pushed away from each other by the overlapping
full vector space, they will push into each other.

It would be worthwhile to make the model parallel. For
example, diffusion takes a lot of time and resources. GPU
could help with this, and uniform grids already have been
implemented with CUDA. The substrate could be
supplemented with more nutrients like Nitrate and Sodium.
Together with this, we would then be able to simulate more
types of bacteria. The graphical library supports user interface
design. Implementing a proper user interface could also be a
nice upgrade.

ACKNOWLEDGMENTS

The authors thank the High Performance Computing
Research Group of Obuda University for its valuable support.

The authors also thank NVIDIA Corporation for providing
graphics hardware for the experiments.

REFERENCES

[1] J. Juhasz, Mikrobialis kozosségek koordinaciojanak vizsgalata
agensalapu modellekkel, PhD Thesis, 2018

[2] D. Bihary, A baktériumok quorum érzékelésének agens alapu
modellezése, Phd Thesis, 2014

[3] Hoveyda, Amir H., David A. Evans, and Gregory C. Fu. Substrate-
directable chemical reactions. Chemical reviews, vol. 93, no. 4, 1993,
pp. 1307-1370.

[4] C. Ericson, Real-time collision detection, Crc Press, 2004

[5] Jan-Ulrich K. Ginger B. Julian W. T., BacSim, a simulator for individual-
based modelling of bacterial colony growth. Microbiology, vol. 144,
no. 12, 1998, pp. 3275-3287

[6] C. Prats, Individual-based modelling of bacterial cultures in the study of
the lag phase, PhD Thesis, 2008

[7] Spodniak, Miroslav, et al. "Methodology for the Water Injection System
Design Based on Numerical Models." Acta Polytech. Hung 18 (2021):
47-62.

[8] K. Czakoova, O. Taka¢, The application of modermn technologies for
image processing and creating real model in teaching computer science
at secondary school, ICERI2020 Proceedings, 2020, pp. 6180-6187.

[9] Namestovski, Z.; Kovari, A. Framework for Preparation of Engaging

Online Educational Materials—A Cognitive Approach. Appl. Sci.
2022, 12, 1745.

000253

R. W. Polényi and S. Szénasi * Bacteria Colony Simulation

000254

