
Solving ARC with non-procedural program
induction

Norbert Neumann∗, Ádám Pintér†

∗ John von Neumann Faculty of Informatics, Óbuda University, Budapest, Hungary
† John von Neumann Faculty of Informatics, Óbuda University, Budapest, Hungary, pinter.adam@nik.uni-obuda.hu

Abstract—This paper attempts to solve the Abstraction and
Reasoning Corpus (ARC) [1] which was made to measure strong
generalization in artificial intelligence systems. The existing
program induction solutions have the disadvantage that the
program tree defined by the used Domain-Specific Language
(DSL), in which the search takes place, grows exponentially with
the length of the program, making the search space too large
to find the appropriate program. Our program induction-based
solution attempted to eliminate the need for searching in the
DSL’s program tree. This requires that the induced program
should not be procedural, i.e., it should not consist of a sequence
of instructions built on top of each other. The induction of such
programs is much simpler, as breaking down the instruction’s
interdependence causes the search time to grow only linearly with
the program’s length. This method successfully reduced the size
of the problem’s search space. Compared to previous methods,
the average task-solving time was significantly lower than in any
other publications. It was able to solve 41 tasks in the training
set and 10 tasks in the public test set, which is the fourth-best
result among previous publications.

Index Terms—abstraction, reasoning, program induction

I. INTRODUCTION

ARC contains 1000 image-based reasoning tasks. In a task,
a certain number of (usually three) demonstration examples are
given. An example consists of an input and its corresponding
output, where the output is obtained from a complex trans-
formation of the input. Both the input and output consist of
a square grid ranging from 1 × 1 to 30 × 30, where each
position contains a symbol that can be visualized as a color
as an example is shown in Figure 1. There are a total of
ten possible colors. The algorithm solving the task needs to
recognize the transformation performed on the demonstration
examples and then apply it to one (in some cases more than
one) test example. The algorithm only receives feedback on
the success of its answer, not on the specific errors made.

II. RELATED WORK

All previous solutions attempted to solve the problem using
program induction with the help of a domain-specific language
specifically designed for this purpose. The number of programs
that can be generated from the given DSL exponentially
increases with the length of the program, so many existing
solutions have tried to narrow down the search space using
some kind of heuristics.

Fischer et al. [2] used an evolutionary algorithm to search
for the appropriate solution within the program space of the

Fig. 1. Structure of an ARC task [1]. The output is the most frequently
occurring object in the input.

DSL. Out of the 400 training samples, the approach achieved
a correct solution rate of 7.68% (±0.61%), while for the 100
private test samples, the algorithm provided correct solutions
in 3% of the cases.

Banburski et al. [3] attempted to solve 36 pre-selected tasks
using the Dreamcoder architecture. The architecture was able
to solve 22 tasks within 4 iterations.

Acquaviva et al [4] also employed the Dreamcoder archi-
tecture, which created a dataset containing natural language
descriptions of the programs that can be found in ARC. In
addition to the input-output pairs, this description was also
provided as input to a neural network assisting in the traversal
of the program tree. With the natural language descriptions,
the architecture successfully solved 22 tasks in the public test
set, and without them, it solved only 18 tasks.

The most successful solution [5] so far achieved a 20%
success rate on the test tasks. The brute-force approach at-
tempted to generate correct solutions using a combination
of handcrafted image transformations consisting of approx-
imately 7000 lines of code. According to the author, the
significantly larger and faster image transformations compared
to other approaches contributed to the success of his solution.

A similar solution to the previous is the Visual Imagery
Reasoning Language (VIMRL) [6] system, which also exhaus-
tively explores the program space covered by the DSL using
a brute-force approach. Compared to the previous solution,
this system also incorporates ”high-level” operations that
use algorithms instead of elementary images or mathematical
operations for solving ARC tasks. In its best run, the system
solved 104 tasks in the training set and 26 tasks in the public

CINTI 2023 • IEEE 23rd International Symposium on Computational Intelligence and Informatics • November 20-22, 2023 • Budapest, Hungary

979-8-3503-4294-9/23/$31.00 ©2023 IEEE 000271

20
23

 IE
EE

 2
3r

d
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 a
nd

 In
fo

rm
at

ic
s (

C
IN

TI
) |

 9
79

-8
-3

50
3-

42
94

-9
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

IN
TI

59
97

2.
20

23
.1

03
82

00
9

Authorized licensed use limited to: University of Obuda. Downloaded on September 12,2025 at 14:46:41 UTC from IEEE Xplore. Restrictions apply.

test set.
Xu et al. [7] followed the assumption that ARC tasks can be

more easily solved by focusing on relations between objects
extracted from individual images, rather than the images
themselves. After transforming the tasks into graphs, this
solution searches for the program solving the task within a
DSL tailored to this data structure, like previous approaches.
The method successfully solved 57 tasks in the training set.

All previous approaches have been unidirectional, meaning
that the system tries to generate the expected output from
the input. This is inefficient because it evaluates programs for
which there is no evidence based on the output. This is what
Alford et al. [8] aims to improve, where the authors’ goal is
for their system to solve ARC tasks in a way similar to human
thinking [9]–[12]. According to the authors, this is achieved
by jointly examining the input and output images to derive
the correct transformation in multiple successive steps. The
objective is to establish a ”binding” between the objects in the
output image and the property of the input image, meaning that
there exists a sequence of operations that derives the currently
examined object in the output from the properties of the input.
This binding process is bidirectional, so the DSL designed for
this purpose includes invertible operations. They formalized
this process as a reinforcement learning problem: at each step,
the agent’s task is to decide which instruction from the DSL
to apply, with what parameters (intermediate results), and in
which direction (input-output or output-input). The algorithm
was tested on 18 pre-selected tasks that involved symmetries,
and it successfully solved 14 of them.

III. METHODOLOGY

A. Domain-Specific Language

Like many existing solutions, We try to interpret ARC
tasks in an object-centric manner. According to this approach,
the individual images consist of a background and one or
more independent objects. The preprocessing module will
perform the interpretation of images in this way. Therefore,
the induction algorithm should not work with the pixels of the
given image but with the extracted objects from the image.
For this purpose, the DSL should include a description for
representing objects. An object is represented by the DSL with
the following seven properties:

1) Shape: The color-independent shape of the object. In
practice, this is a two-dimensional matrix where values
greater than zero indicate regions of the shape. In order
to visually represent the shape, some coloring needs to
be assigned to these regions. This task is handled by the
C : region → color mapping. With this mapping, the
shape remains color-independent, and different objects
with different colorings can be visually generated from
a single shape.

2) X: The vertical coordinate of the object.
3) Y : The horizontal coordinate of the object.
4) Width: The width of the object’s shape.
5) Height: The height of the object’s shape.

6) C: The color mapping of the object.
7) N : Noise objects for current objects.

Some ARC tasks require the existence of shapes that follow
an infinitely repeating pattern. Due to their infinite extent, it
is necessary to provide the width and height of the object.

In ideal cases, the first six properties can describe individual
objects. However, in some ARC tasks, partial occlusion may
occur, meaning that one object partially obscures another. For
many tasks, it is necessary to know which objects partially
occlude other objects. Set N provides this information. It is
not necessary to consider cases where one object completely
occludes another. If an object does not occlude anything, then
N is the empty set.

The operations of the DSL produce one of the seven
description properties. The structure of an operation is as
follows:

operation name [arg0] [arg1] (1)

where the second argument is only used in a few operations.
In this paper, the following operations are used:

• x of [obj]: returns the X coordinate of the given object.
• y of [obj]: returns the Y coordinate of the given object.
• width of [obj]: returns the width of the given object.
• height of [obj]: returns the height of the given object.
• shape of [obj]: returns the shape of the given object.
• color of [obj] [n]: returns the color of the n-th region of

the given object.
• color map of [obj]: returns the entire color map of the

given object.
• noise of [obj]: returns all noise objects of the given

object.
• nth noise of [obj] [n]: returns the n-th noise object of

the given object.
• const shape [shape]: an identity operation that returns

the given shape.
• const number [num]: an identity operation that returns

the given integer.
• const color [c]: an identity operation that returns the

given color.
• flatten [shape]: ”flattens” the given shape data type,

resulting in a shape that has the same size and shape as
the operation parameter, but assigns the same region to
each position.

• dominant color [obj]: returns the color that appears
most frequently in the color map of the given object.

• find object [predicate]: returns the object for which
the given predicate evaluates to true (there can only be
one such object, and if the predicate is true for multiple
objects, the operation will throw an error).

During induction, it may happen that we cannot express
a property of an object based on the input image using any
operation. In such cases, we still need a method to access
these values. For this purpose, We introduced the constant
operations const shape, const number, and const color,

N. Neumann and Á. Pintér • Solving ARC with non-procedural program induction

000272

Authorized licensed use limited to: University of Obuda. Downloaded on September 12,2025 at 14:46:41 UTC from IEEE Xplore. Restrictions apply.

which are one-parameter functions with a return value equal
to the parameter received.

The predicates are functions that return a Boolean value and
have one or two parameters. They have the same structure as
the operations. A predicate indicates whether an object has a
certain property. It plays a role during the execution of the
transformation program. The complete set of predicates is the
followings:

• color group: two or more objects form a color group c
if the color map of all such objects contains the color c.

• visual group: two objects visually match, if the shape,
width, and length of the two objects match, visual groups
can be created according to this relation, in a similar way
to color groups.

• belongs to color group [obj]: true if the object re-
ceived as a parameter belongs to at least one color group,
false otherwise.

• unique color [obj]: true if the object received as a
parameter is single-colored and does not belong to any
color group, false otherwise.

• belongs to specific color group [obj] [c]: true if the
object received as a parameter belongs to the color group
c (so the color of the group is c), false otherwise.

• belongs to visual group [obj]: true if the object re-
ceived as a parameter belongs to a visual group, false
otherwise.

• unique visual [obj]: true if the object received as a pa-
rameter does not belong to a visual group, false otherwise.

• belongs to specific visual group [obj] [V]: true if
the object received as a parameter belongs to visual group
V , false otherwise.

• const visual [obj][V]: true if the object received as a
parameter visually matches V , false otherwise.

• has color [obj][c]: true if the object colormap received
as a parameter contains color c, false otherwise.

• container [obj]: true if the object received as a parameter
contains another object, false otherwise.

• contained [obj]: true if the object received as a parameter
is contained by another object, false otherwise.

• parent [obj]: true if the object received as a parameter
has noise objects, false otherwise.

• child [obj]: true if the object received as a parameter is
a noise object of another, false otherwise.

• unicolor [obj]: true if the object received as a parameter
is monochrome, false otherwise.

• multicolor [obj]: true if the object received as a param-
eter is multi-colored, false otherwise.

• is max [obj]: true if the size of the object received as a
parameter is the largest among all objects filtered from
the image, false otherwise.

• is min [obj]: true if the size of the object received as a
parameter is the smallest among all objects filtered from
the image, false otherwise.

• is max color [obj] [c]: true if the object received as a
parameter contains the color c and this color is found in

this object most of the time.
• contained by const visual [obj] [V]: true if the object

received as a parameter is contained by another object
that visually matches V, false otherwise.

• belongs to visual group contained by const visual [obj] [V]:
true if the given object belongs to a visual group and the
group has at least one element contained by an object
that visually matches V, false otherwise.

The transformation program, which receives the extracted
objects from the input image as parameters, can be built
from the previously described parts of the DSL. It generates
the expected output for the given task. The transformation
program consists of one or more sub-transformations. A sub-
transformation is composed of a condition and a program,
where the condition is a set of predicates, and the program is
an expression that contains seven operations, each generating
a descriptive property of the object.

The execution of the transformation program follows the
following steps: Iterate over the set of input objects received
as parameters. Evaluate the condition part of each sub-
transformation for each object. If all predicates are true for
a particular object, execute the program part of that sub-
transformation. The result is an ARC object, which is added
to the set of output objects. Repeat this process for each input
object, resulting in a set of output objects. Later, this set is
transformed into an image by the post-processing module. By
comparing the generated output with the expected output, it
can be determined whether the system successfully solved the
given ARC task.

The DSL contains 4 data types: shape, color, number,
and object, which are built from the first three types. The
expressions that produce values for these types are:

ES(shape) =

{expr ∈ DSLSHAPE |eval(expr) = shape}
ES(color) =

{expr ∈ DSLCOLOR|eval(expr) = color}
ES(number) =

{expr ∈ DSLNUMBER|eval(expr) = number}
ES(object) =

{expr ∈ DSLOBJECT |eval(expr) = object}

(2)

where DSLSHAPE , DSLCOLOR, etc. are sets representing
parts of the DSL operation set that evaluate the shape, color,
etc. data types. The operations for these four data types are as
follows:

DSLSHAPE =

{group of, const group, flatten}
DSLCOLOR =

{color of, const color, color map of,

dominant color}
DSLNUMBER =

{x of, y of, width of, height of,

const number}
DSLOBJECT =

{noise of, nth noise of, find object}

(3)

CINTI 2023 • IEEE 23rd International Symposium on Computational Intelligence and Informatics • November 20-22, 2023 • Budapest, Hungary

000273

Authorized licensed use limited to: University of Obuda. Downloaded on September 12,2025 at 14:46:41 UTC from IEEE Xplore. Restrictions apply.

B. Induction Algorithm

In the first step, for each x ∈ X input object, two sets of
predicates are generated.

First is P (x) which contains the predicates that, when
evaluated on the given x object, return true:

P (x) = {p ∈ Upredicate|p(x) = 1} (4)

Second, is Punique(x) which contains the predicates that
only evaluate to true for the given x object among the X
objects:

Punique(x) =

{p ∈ P (x)|∄xi ∈ X − x where p(xi) = 1}
(5)

In the next step, equivalence saturation is performed on
each description property of each y ∈ Y output object. This
results in a set for each property, which contains all the DSL
expressions that would evaluate the value of that property.
Since the object representation consists of 7 such properties,
the result is 7 sets for each output object:

ES(y) = (ESS(y), ESX(y), ..., (ESN (y)) (6)

The expressions generated by ES are built from DSL oper-
ations and object references. In the next step, We replace the
object references with the unique predicates of the respective
object. For example, if we have an expression (rotatex180)
and Punique(x) = {P1, P2, P3}, the result of the substitution
is:

{(rotate P1 180), (rotate P2 180), (rotate P3 180)} (7)

This substitution is performed for all elements in the sets of
expressions. The resulting 7 sets (whose elements no longer
contain object references) are denoted as programpseudo(y).
These steps are repeated for all input-output pairs of objects
in the given ARC task. The pseudo programs generated this
way are collected into one set:

Uprograms =
⋃

∀Yi∈T

{programpseudo(y)|∀y ∈ Yi} (8)

For pseudo programs, We define an ”intersection” and
an ”emptiness” operation. The intersection of two pseudo
programs is the intersection of the sets associated with each
description property. A pseudo program is empty if any set
associated with a description property is empty.

Currently, these are not actual executable programs since,
instead of a single expression for each description property, we
have sets of expressions. In the next step, a single expression
will be selected for each description property, which will
become part of the actual program.

To do this, We utilize the fact that multiple demonstration
examples are given for a specific task, where the same target
program is executed on different inputs. Therefore, it can
be assumed that the expressions that frequently appear in
a specific description property of the pseudo program are
likely to be parts of the target program. To find this, a

counter is assigned to each expression. If We want to find the
program for the output object y, We need to iterate through
all pseudo programs and check if the pseudo program of y
and the current pseudo program have a common intersection.
If they do, the counters of the expressions present in both sets
are incremented. Thus, the counter for an expression expr
associated with the object y can be written as follows:

count(y, expr) =

| {p∀p ∈ Uprograms|expr ∈ programpseudo(p)

and programpseudo(y) ∩ p ̸=} |
(9)

The final program for y consists of the expressions whose
counter for the respective description property is maximal:

program(y)I = argmax
∀expr∈programI

pseudo(y)

count(y, expr) (10)

where I in the upper index indicates one of the properties
of the 7-element object description. We perform this for each
output object and then group these output objects based on
the generated program. If there are multiple expressions, the
first one is selected for non-integer data structure properties
(shape, color map, noise). For the others, the ”best matching”
expression is selected. This is always the query expression
corresponding to the respective description property: for the
vertical coordinate x, it is x of ; for the horizontal coordinate
y, it is y of ; for the width property, it is width of , and for the
height property, it is height of . If there is no such expression,
the first one is selected, similar to the other description
properties. If there happen to be multiple such expressions, the
first one among the ”best matching” expressions is selected.

The last step of induction is to find the predicates that de-
termine which group a given object belongs to. The grouping
predicates for a particular class c can be obtained by taking the
anchor objects of all output objects belonging to class c and
determining the predicates that are true for all these objects
but false for all other input objects:

predicates(c) =

{p ∈ Upredicates|
∀y+ ∈ c

p(anchor(y+)) = 1 and

∀y− ∈ C

c
p(anchor(y−)) = 0}

(11)

IV. EVALUATION

The results of the system are shown in Table I. The system
successfully solved 41 tasks from the public training set of 400
tasks and 10 tasks from the public test set. Compared to other
publications, this ranks as the fourth-best result (Fig 2). In
terms of execution time, the average task-solving time is 0.48
and 1.67 seconds on the training and test sets respectively.
This metric has been mentioned in several other solutions
as well, but due to the non-uniform execution environment,
comparing them does not provide an accurate picture of
the actual speed of each algorithm. Nevertheless, it can be

N. Neumann and Á. Pintér • Solving ARC with non-procedural program induction

000274

Authorized licensed use limited to: University of Obuda. Downloaded on September 12,2025 at 14:46:41 UTC from IEEE Xplore. Restrictions apply.

observed that the presented method’s average execution time
is orders of magnitude smaller than the others (Fig 3).

TABLE I
THE ALGORITHM’S SCORE AND AVERAGE TASK SOLVING TIME

Training
set

Public
set

Private
set

Tasks solved 41 10 0
Average task time (seconds) 0.48 1.67 -

Fig. 2. The performance of different solutions on the training set (blue),
public test set (green), and private test set (gray). The results of our solution
are indicated in the ”*” column.

Fig. 3. The average task-solving time in seconds for different solutions. The
time corresponding to our solution is indicated in the ”*” column.

V. CONCLUSION

The aim of this paper was to present an induction algorithm
that eliminates the infeasibly large search space by abandon-
ing proceduralism, thereby achieving equal or better results
than existing algorithms on the ARC problem. The presented
system successfully reduced the size of the problem’s search
space. Compared to previous methods, the average task-
solving time is the lowest. The algorithm was able to solve
41 tasks in the training set and 10 tasks in the public test set,
which is the fourth-best result among previous publications.
However, none of the private test set tasks were solved. The
primary reason for the low number of solved tasks relative to

the dataset’s size is the number of instructions in the domain-
specific language. Our main goal was to create an algorithm
that avoids searching in the DSL’s program tree by abandoning
proceduralism not to write a complete DSL containing all
operations required for solving every task. Therefore, the
primary direction for further development is to expand the
DSL’s operation set, which will likely make it possible to solve
most of the tasks in the public sets and achieve non-zero result
on the private test set.

VI. ACKNOWLEDGMENTS

The authors would like to thank the Hungarian National
Talent Program (NTP-HHTDK-22) for its valuable support.

REFERENCES

[1] Chollet, F., “On the measure of intelligence”, ArXiv -
arXiv:1911.01547v2, 2019.

[2] Fischer, R., Jakobs, M., Mücke, S., & Morik, K., ”Solving Abstract
Reasoning Tasks with Grammatical Evolution”, Proceedings of the
LWDA 2020 Workshops: KDML, FGWM, FGWI-BIA, and FGDB, pp.
6-10, 2019.

[3] Banburski, A., Ghandi, A., Alford, S., Dandekar, S., Chin, P., & Poggio,
T., ”Dreaming with ARC. Center for Brains, Minds and Machines”,
CBMM, 11 2020.

[4] Acquaviva, S., Pu, Y., Nye, M., Wong, C., Tessler, M. H., & Tenenbaum,
J., ”LARC: Language annotated Abstraction and Reasoning Corpus”, In
Proceedings of the Annual Meeting of the Cognitive Science Society,
Vol. 43, No. 43, 2021.

[5] top-quarks/ARC-solution [Online], Available at: https://github.com/top-
quarks/ARC-solution [Accessed: 28 July 2023].

[6] Ainooson, J., Sanyal, D., Michelson, J. P., Yang, Y., & Kunda, M., ”An
approach for solving tasks on the Abstract Reasoning Corpus”, ArXiv -
arXiv:2302.09425, 2023.

[7] Xu, Y., Khalil, E. B., & Sanner, S., ”Graphs, Constraints, and Search
for the Abstraction and Reasoning Corpus”, ArXiv - arXiv:2210.09880,
2022.

[8] Alford, S., Gandhi, A., Rangamani, A., Banburski, A., Wang, T.,
Dandekar, S., ... & Chin, P., ”Neural-Guided, Bidirectional Program
Search for Abstraction and Reasoning”, In Complex Networks & Their
Applications X: Volume 1, Proceedings of the Tenth International
Conference on Complex Networks and Their Applications COMPLEX
NETWORKS 2021 10, pp. 657-668, 2022.

[9] Valeria Diaz, ”Machine Learning for Detection of Cognitive Impair-
ment”, Acta Polytechnica Hungarica, Vol. 19, No. 5, 2022.

[10] Piroska Biró, Tamás Kádek, ”The Mathability of Computer Problem
Solving with ProgCont”, Acta Polytechnica Hungarica, Vol. 19, No. 1,
2022.

[11] Man-Wen Tian, Ardashir Mohammadzadeh, Jafar Tavoosi, Saleh
Mobayen, Jihad H. Asad, Oscar Castillo, Annámaria R. Várkonyi-Kóczy,
”A Deep-learned Type-3 Fuzzy System and Its Application in Modeling
Problems”, Acta Polytechnica Hungarica, Vol. 19, No. 2, 2022.

[12] Zoltán M. Balogh, Alexandru Kristály, ”Sharp isoperimetric and Sobolev
inequalities in spaces with nonnegative Ricci curvature”, Mathematische
Annalen, Vol. 385, pp. 1747–1773, 2023.

CINTI 2023 • IEEE 23rd International Symposium on Computational Intelligence and Informatics • November 20-22, 2023 • Budapest, Hungary

000275

Authorized licensed use limited to: University of Obuda. Downloaded on September 12,2025 at 14:46:41 UTC from IEEE Xplore. Restrictions apply.

N. Neumann and Á. Pintér • Solving ARC with non-procedural program induction

000276

Authorized licensed use limited to: University of Obuda. Downloaded on September 12,2025 at 14:46:41 UTC from IEEE Xplore. Restrictions apply.

