
Parsing via Regular Expressions
Dávid Magyar

John von Neumann Faculty of Informatics
Óbuda University

Budapest, Hungary
magyar.david@stud.uni-obuda.hu

Sándor Szénási
John von Neumann Faculty of Informatics

Óbuda University
Budapest, Hungary

szenasi.sandor@nik.uni-obuda.hu

Abstract—This paper describes an approach of interpreting
program code text using parsing expression grammar, building
an abstract syntax tree as its interpretation progressively. The
presented algorithm uses a declarative system of regular expres-
sions applicable not to text, but to tokens and larger, already
interpreted parts of the code - making the algorithm itself and
its usage easy to understand. This approach allows parallelization
of the interpretation process as well, which optimization would
not be possible otherwise.

Index Terms—program-code parsing, regular expressions,
declarative parsing, imperative parsing, runtime parser, flexible
parser

I. INTRODUCTION

Since programming languages exist, parsing the code -
primarily for compilation - is an ever-present necessity. As
of today, there is a deep theory of this topic, describing
approaches and useful constructs, categories and capabilities
of parsers, which this paper does not intend to dive in deep, but
to describe and use the official technical terms where possible.
The presented approach of parsing utilizes regular expressions
and forms a PEG (Parsing Expression Grammar [1]), which
is more expressive than simply regular expressions [2]. This
paper aims to present an approach specially for parsing
complex input recursively using PEG approach. The rest of
this document describes an easy to configure and understand
interpreter based on regular expressions over characters, tokens
and schemas.

The goal is to parse an input text - being an ordinary
sequence of characters, like a .txt file - into a tree of nodes
known as Abstract Syntax Tree (AST from now on). In this
process the input text does not get modified, but its parts get
associated with their interpreted meaning, like when parsing
a program-code, then the “class” word within the input
text might be interpreted as a keyword, being part of a class
definition.

The resulting AST can be used to obtain information
from the raw input text, like in case of input files such as
configuration files or more often the AST of raw program-
code text is used by the compiler to compile the code. The
software and approach presented in this document aims to
deliver the ability, so users can set up an easy to understand,
but efficient enough parsing workflow, which can be executed
on any input text to obtain its AST.

Although regex can be transformed to equivalent PEG [3],
the presented parser uses PEG with recursive algorithm and

which does not operate on the input text characters directly,
but (after tokenization) on matched tokens and schemas (con-
sisting of token and/or sub-schema matches).

II. RELATED WORK

There are many different approaches for parsing. One of
the primary categorization is whether a parser is bottom-to-
top/bottom-up or top-to-bottom/top-down. A bottom-up parser
first finds the smallest, atomic parts, which hold the details of
the information, then gradually merges these small parts into
larger concepts. A top-down parser does the opposite; finds
the bounds of the largest concepts first, then knowing them,
will parse the inner part of these larger concepts, searching
for more detailed information on it. [4]

As an example of the usual use-case, the top-down parser of
program code might find the concept of the class first, between
its “class” keyword, name of class, opening bracket until
its ending bracket. What is included between the brackets
is not important yet and will parsed afterwards. Then, after
the class concept has been recognized, its inner part gets
parsed, searching for field definitions and methods. After then
within methods: for statements, within statements: values and
operators... On the other hand, a bottom-up parser intents
to find the values and operators first, then the statements
enclosing them, then their enclosing functions and neighboring
fields, then the class enclosing the found fields and functions.

Usually the most efficient parser strategy is to use DFA -
deterministic finite automaton. Basically using a rigid state-
diagram of how the parts can follow each other. Such math-
ematical approach can result in fast parsers performing well,
on the other hand, they might very well be hard to construct,
maintain and extend by hand. For that reason, the DFA many
times gets generated from declarative definitions given by
the programmer, which the parser generator uses in order to
construct the DFA and output the source code of a parser
based on the given DFA. The downside of this approach is
that it expects a valid sequence of input. In case part of
the code is syntactically wrong, then it can mess up all the
code below it (further parts of the input sequence) for the
compiler, hence one user error results in tons of errors from
the compiler - this can experienced while compiling C++ code.
The reason for this issue is, that we - programmers - do not
conceptualize or understand code as a sequence, but rather a
tree of separate definitions, like classes in a file, functions



in a class, statements in a function, etc. Hence, a human
approach of “manual compilation” would highly differ from
the described DFA approach.

Parser generators are considered to be the professional way
of doing parsers and which are considered superior to parsers
based on regular expressions, mainly because of nesting and
unexpected parts [5]. Meanwhile, there are existing parser
libraries - similar to what is presented in this paper - mostly
configured through some programming API [6]. Examples
of such libraries: Myna, Parsimmon, and Chevrotain. Some
consider writing a regex-based parser as an initial step before
proceeding to use non-deterministic finite automata and then
deterministic finite automata [7], [8].

Parsing via PCRE (regex implementation with additional
features) is considered to be very useful at times. Although
handled with skepticism for more complex tasks, it is indeed
usable for the purpose [9].

III. METHODOLOGY

The parser described in this paper aims to work more alike
how a human being would try to understand a program-code.
As of usage and implementation, it should be parameterized up
fast, does not require any output code generation, compilation,
nor graphs or state-diagrams to work. On the other hand,
letting the user give the definitions in a declarative way and
expect the parser to follow the rules enhances usability greatly.

For this reason, the parser first loads its definitions from
definition files runtime on start-up, buffers them as definition
objects and uses these objects to parse the input text. It
is one process, runtime. This leads to some concern about
performance, but gives the programmer/user the ability to
modify, add, or generate definitions runtime from anything,
anytime. Also, these definitions does not parameterize a parser-
generator, but the parser itself. Such definitions given declar-
atively are the token system and the schema system.

A. Token System

The lexer, which tokenizes the input text into recognized
tokens, works based on token type definitions. Each token
type definition is named uniquely, but can have one or more
token matchers associated with, whose role is to find matching
parts of the input text for recognition for the defined token
type. Such matchers can be simply of exact characters, some
characters with extra criteria of word boundaries around or
an ordinary regular expression on character sequence. These
defined token type definitions form a token system for the
token parser to work with. Furthermore, token matcher of
ranges (with beginning and ending parts, like quoted strings)
is also getting added soon. Such token matcher functionality
can be optimized and further extended later by choice.

B. Schema System

Then, from tokens we parse schemas. Schemas in this
context is a pattern of tokens and/or other schemas followings
one another as defined. Similarly to the token system [10], the
schema parser, which parses from the recognized tokens, work

from a schema system of schema type definitions. Schema
type definitions are somewhat similar to token type definitions;
are uniquely named and associated with some patterns. One
particular schema definition is either a range or a sequential
schema definition, which two are different in mechanics. A
sequential one matches a sequence of tokens and/or schemas
to form a new concept, but which concepts are complete in
the sense, that they are considered fully parsed downwards
and can be used upwards only in containing schemas. Range
schema definitions on the other hand has a beginning and
ending pattern, which breaks the bottom-to-top concept, being
a top-to-bottom one. It’s not a problem, rather a tool to
write the grammar more freely and more similar to human
understanding.

A schema type definition matches a pattern of to-
kens/schemas of a regular expression - consisting of tokens
and schemas, not characters -, hence the name of the project.
Since a custom regular matcher had to be implemented, it
does not support all variety of regex functionality, although
most are planned. For now, it supports sequence of items,
groups, selection (OR) within groups, group quantifiers and
lock-aheads. For the near future, capturing groups are also
planned and might take a role in the parsing as well. With
quantifiers, optional groups are also possible as at least zero
(0..) quantifier.

Range schemas can also be defined, which consist of a
beginning and an ending pattern and matches if the two are
matched in the mentioned order. In order to handle nesting
properly, only the innermost matches are matched within a
cycle. To do this, the ending pattern must find a match and
it gets associated with the closest beginning match preceding
it. An interesting feature of this parser is that when a range
- which might be a code block, for example - is matched, it
does not make any statement about the content of the matched
range. This content is considered a not-yet-used parsing area
with no associated rule-set (being a set of schema definitions).
When another schema makes use of this range schema match,
then it can specify the rule-set for the content of the range -
and with the rule-set enqueue that parsing region for parsing.
This allows the grammar to separate the definitions of the
blocks themselves and the definitions of the contents of the
blocks. Such approach was inspired by the custom highlighting
definitions of Visual Studio Code.

C. Implementation

The loading of the definition systems is the least interesting
part - an indention-based parser for a YAML-ish, custom
syntax was implemented. Plain YAML and JSON support are
to be added later on. What is more interesting is the actual
parsing mechanism, that parses based on the given definitions.
First of all, we know, that token types and schema types all
have their own matchers, which can be used.

D. Matchers

All these matchers are capable of the same thing essentially;
when given a sequence of items, then it can indicate whether



it matches some part of it, and if yes, then from which index
to which other index - items being text characters for token
matchers and token/schema matches for schema matchers.

The regular expression matching is implemented in a left-
most match manner, with an always eager capturing, with
backtrack fallbacks when allowed by group quantifier. Lazy
quantifiers are neither supported currently nor planned, but
might be added later if in demand. The whole regular ex-
pression matching is based on the individual matchers of the
definitions - allowing any kind of, even custom matchers to
take part of the matching their own way. The only requirement
is to provide the schema matcher interface, essentially to
provide a match if can from an input sequence.

E. Priorities while Parsing

There is an additional feature to both token and schema
definitions, which remains to be described here, because it is
closely related to the parsing mechanism itself. In this parser,
there is no priority defined between definitions other than via
this mentioned feature; sections. Sectioning can be used to
separate definition into separate sections, which are kept in
the order of definition and which order is chronologically
considered while parsing. In other words, definitions within
sections coming sooner in a file (more up in it) will take
place sooner in parsing as well, while definitions given in
later sections will take part in parsing later. This causes the
sooner sections to have some kind of priority over the later
sections. There are two kinds of separators: hard and soft.
Hard separator separates its before and after part into separate
hard sections. Hard sections can be further separated into soft
sections using soft separators.

1) Hard Sections: Hard sections are taken in sequential
order and execute one-by-one. This means, that while parsing
the first hard section, the content of the second hard section is
completely irrelevant. When definitions of one hard section
can find no more matches, the hard section is considered
exhausted and the parser proceeds to the next hard section.
Exhausted hard sections are also not relevant while parsing
later hard sections. Hence, these sections are “separated hard”.
The parsing of the hard section ends and the hard section is
considered exhausted when none of its soft sections find any
new matches. For this reason, parsing a hard section can be
considered recursive.

2) Soft Sections: Soft sections are within hard sections, so
each hard section consists of one or more soft sections. Soft
sections do still enjoy priority over each other in definition
order, but their parsing takes place in the same exhaustive loop.
This means, that soft sections are parsed as if they were hard
sections, after each other, dominating each other, but then after
the last soft section the first soft section of the hard section is
taken again, whether it finds new matches from the matches
found in later soft sections of the hard section. Hence, the
clearest difference between hard and soft sections is, that a
definition within a hard section cannot refer to a definition,
which is parsed in later hard sections, while definitions in soft

sections can refer to matches of definitions matched in later
soft sections (within the same hard section).

F. Interpretation Algorithm
Interpretation is usually achieved through tokenization and

parsing - so the interpreter consists of a lexer capable of
tokenization and a parser. The lexer converts the input text
into tokens, and the parser parses the tokens to an AST. In
this algorithm, the AST is not directly generated from tokens,
but through recursively matching schemas from tokens and
other already matched schemas.

Fig. 1. Process of Interpretation

This figure simplifies the algorithm significantly, but at the
highest abstraction level, it looks like this; the parsing runs in
a loop, repeating until there are no more schemas found. At
that point, the AST is considered complete and returned as the
result of parsing. The real algorithm, of course, must consider
the previously described sectioning and that the content of
found range-schema matches must be parsed too.

Fig. 2. Pseudo-Code: Interpret

The attached pseudo-codes are still a bit simplified relative
to actual code, but they describe how sections and ranges are



included in the parsing process; the tokenization happens only
once, yielding all found tokens.

Fig. 3. Pseudo-Code: Tokenize

Then, all these tokens are considered one big region of
parsing - being now the only 1 parsing region active -, using
the default schema definition rule-set from the schema system.
The parsing then begins, executing all hard-sections of the
rule-set after each other. After completion of the last hard-
section, it checks if there has been a new parsing area added.
If so, it was added with a rule-set associated with it, time to
execute the hard-sections of that rule-set on the given added
area.

Fig. 4. Pseudo-Code: Run Hard-Sections

This repeats until there are no more parsing areas. Parsing
areas are being added during the execution of hard-sections,
soft-sections are run and within them, schemas are being
found. In case the found schema contains a range schema
associating it with a rule-set, it adds the content of the range
schema match with the rule-set to the parsing areas waiting for
parsing. This also gives place to some serious optimization;
the parsing areas are stored in a set essentially, which, if made
thread-safe supports parallel parsing on multiple threads.

Fig. 5. Pseudo-Code: Run Hard-Section

IV. EVALUATION

A. Usability

The configuration of the described parser is far simpler
than mentioned other similar applications and is done from
configuration files in a declarative manner, not by code imper-
atively. This can make it work even as a language-independent
command-line tool, not only as a code library. Also, since all
required input files are textual in nature, they can enjoy all
benefits of common version control systems like Git.

Since the parser is based primarily on the concept of regular
expressions, their advantages are gained as well; regular ex-
pressions are powerful tool for matching against sequences of
items. Also, regex is such a tool most programmers met during
their career and can be learned under short periods of time.
This parser makes use of the fact, that regular expressions are
commonly defined and well known, further lessening the effort
needed to use it.

B. Output

Schemas can be described as regular expressions which do
backtrack, but which behavior is limited only the matcher
of the given schema - the parser algorithm itself does not
backtrack, but incrementally builds parts of the resulting AST
instead. The already matched parts will not change meaning
once matched, so the result can be observed while parsing,
even before the parsing ends.

Testing the correctness of the concept and implementation
is done via many unit tests and integration tests. Unit tests
assure the correct functionality of most individual elements of
the software. Integration tests run scenarios, like parsing given
input text file to AST - using all elements of the software
necessary - then comparing the resulting AST to the expected
AST.

C. Performance

Performance was not yet measured or compared as im-
plementation is still in progress. On the other hand, the
algorithm opens up significant opportunities of parallelization;
the interpretation process yields code blocks as new parsing
areas, whose interpretation can be done on a separate thread,
and their result injected into the resulting AST later, or
progressively in a concurrent way.

Matchers can search for matches concurrently as well, al-
though the implementation effort and overhead of paralleliza-
tion might out-weight what is gained. If performance is of key
importance, then matchers could be reworked and optimized,
possibly into a DFA, improving the process significantly.
However, optimizing the matching process of multiple regular
expressions at once on the same input can be of similar or
higher complexity than the algorithm presented in this paper.

Our modern integrated development environments optimize
compilations in yet another way; they generally reuse the
results of previous compilations. When a programmer does
change only a portion of the source code files, then it must
be considered not to recompile everything again - only those



parts, which are affected by the applied changes. This opti-
mization is dependent on the way of source code structuring
associated with the given parsed programming language, but
most languages are modular enough to apply this strategy of
compiler output reuse. As the presented algorithm recognizes
blocks of code, this strategy can be used on the file content as
well; for example, when a function gets changed, then unless
the signature is changed, usually there is no need to recompile
any of the other surrounding functions.

V. CONCLUSIONS

This paper presented an easily usable interpreter based PEG
and regular expressions over matched items. Compared to
usual parsers, the algorithm itself can be demonstrated and
understood easily. Most importantly, it can be learned, set
up and used with little effort and can be modified without
significant effort.

We also saw, that regular expressions can be used not only
on characters of text, but also on a series of arbitrarily defined
objects and can be incorporated with custom patterns and
matchers of such arbitrary objects (being token and schema
matches in the presented parser) and be used for program code
parsing.

Future plans include integrating the implementation into
Visual Studio Code for code highlight and possibly for com-
pilation using the LLVM pipeline.

ACKNOWLEDGMENT

The authors would like to thank both the GPGPU Program-
ming Research Group of Obuda University and the Hungarian
National Talent Program (NTPHHTDK-20) for their valuable
support.

REFERENCES

[1] B. Ford, “Parsing expression grammars: A recognition-based syntactic
foundation,” in Proceedings of the 31st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, ser. POPL ’04.
New York, NY, USA: Association for Computing Machinery, 2004, p.
111–122. [Online]. Available: https://doi.org/10.1145/964001.964011

[2] M. Oikawa, R. Ierusalimschy, and A. Moura, “Converting regexes to
parsing expression grammars,” in Proceedings of the 14th Brazilian
Symposium on Programming Languages, SBLP, vol. 10, 2010.

[3] S. Medeiros, F. Mascarenhas, and R. Ierusalimschy, “From regular
expressions to parsing expression grammars,” in Brazilian Symposium
on Programming Languages, 2011.

[4] Alfred Aho, Monica S. Lam, Ravi Sethi and Jeffrey D. Ullman,
Compilers: Principles, Techniques, and Tools (2nd Edition). Addison
Wesley Publishing Company, 2006.

[5] A. Olsson. (2019). [Online]. Available:
https://medium.com/storyteltech/parsing-text-input-without-regular-
expressions-3e8de68a79a7

[6] C. Diggins. (2018) Beyond regular expressions: An intro-
duction to parsing context-free grammars. [Online]. Avail-
able: https://www.freecodecamp.org/news/beyond-regular-expressions-
an-introduction-to-parsing-context-free-grammars-ee77bdab5a92/

[7] Parsing regular expressions with recursive descent. [Online]. Available:
http://matt.might.net/articles/parsing-regex-with-recursive-descent/

[8] B. Kordic, M. Popovic, and S. Ghilezan, “Formal verification of python
software transactional memory based on timed automata,” Acta Poly-
technica Hungarica, vol. 16, no. 7, 2019.

[9] M. Lenz, Parsing with Perl 6 Regexes and Grammars: A Recursive
Descent Into Parsing. Apress, 2017, page 3.

[10] I. Batyrshin, “Constructing correlation coefficients from similarity and
dissimilarity functions,” Acta Polytechnica Hungarica, vol. 16, pp. 191–
204, 04 2019.


