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Abstract—Couriers of food delivery services are playing a 

significant role in urban areas by efficiently delivering packages. 

However, the problem of coordinating many couriers cannot be 

easily managed. Self-driving vehicles are likely to easily reduce 

courier companies' logistical costs soon. This paper explores 

how a multi-node drone network can be centrally coordinated 

to deliver orders quickly, aiming to achieve customer 

satisfaction. Since the number of entities and calculations 

outlined in the problem is significantly large, the calculations 

require the help of one of the optimization solutions, which is 

guided by a genetic algorithm for route planning. This paper 

aims to create a simulation that uses the heuristic optimization 

algorithm to solve this issue. The goal of the simulation is to 

consider as many factors as possible to generate, calculate, and 

visualize the environment. Simulated courier drones must work 

stably under deterministic and stochastic conditions. The data 

provided by the simulation can serve as an estimate of how a 

realistic or hypothetical resource system would operate. 

Keywords—drone, delivery, optimization, GA, simulation, 

VRP 

I. INTRODUCTION 

The rapid growth of food and package delivery services of 
specific companies has significantly influenced urban 
environments. These companies have been striving to 
efficiently coordinate the delivery of packages and meals to 
residents, utilizing various modes of transportation, including 
cars, motorcycles, and bicycles. However, the coordination of 
many couriers presents a complex problem due to the random 
nature of their behavior and the dynamic nature of traffic 
conditions. 

Researchers have explored alternative solutions to this 
challenge, such as using autonomous vehicles and drones. 
Autonomous vehicles can reduce logistical costs for delivery 
companies in the near future. Drones, in particular, offer 
unique and alternative solutions for task execution. Although 
drones may not be capable of delivering large quantities, their 
ability to bypass existing urban infrastructure limitations 
allows for swift delivery, making them a key player in food 
delivery. 

However, the implementation of drone-based food 
delivery faces several obstacles. Many urban areas have 
restricted or no-fly zones that limit their access. Additionally, 
the absence of gardens or open spaces in some households 
poses challenges regarding delivery drop-off. Weather 
conditions also impact drone operations, as they cannot 
operate reliably and safely under strong winds or heavy 
precipitation. This research assumes the optimal conditions 
for drone operations are met and focuses on addressing the 
central question of centrally coordinating a multi-node drone 
network for efficient delivery while prioritizing customer 
satisfaction and time efficiency. 

This scientific study adopts a heuristic search approach to 
provide quantitative data based on realistic conditions and 
input parameters. The research methodology involves 
dividing the problem into smaller components and creating a 

mathematical model representing the behavior of the system. 
By running simulations, the study can offer insights into 
potential outcomes and estimates that would be difficult, 
expensive, or time-consuming to obtain in real-world 
scenarios. 

The simulation aims to create a model incorporating 
various factors to ensure stable operations of centrally 
controlled drones under deterministic and stochastic 
conditions. The developed algorithm operates based on 
system-specific requirements and constraints. The simulation 
data can provide valuable insights into implementing such a 
drone delivery system's feasibility, environmental impact, and 
cost-effectiveness. It can assist in determining the appropriate 
types of drones, identifying suitable environments for the 
system, and optimizing the placement of service stations for 
drone maintenance, charging, and collection to minimize 
costs. 

In conclusion, this research focuses on a dynamic variant 
of the Vehicle Routing Problem (VRP) called Dynamic 
Vehicle Routing Problem (DVRP) within the context of 
coordinating drone networks. While existing VRP solutions 
address static delivery routes with known locations, this study 
explores the dynamic nature of delivery orders. The 
simulation-based approach, coupled with the heuristic 
optimization algorithm, provides a valuable tool for assessing 
the performance and potential of a realistic drone delivery 
system. 

II. RELATED WORK 

Simple scheduling strategies like First Come First Served, 
Shortest Job First, or Nearest Neighbor may be useable when 
a delivery system needs management [1,2]. Although, to 
achieve the best possible, the least expensive, or the fastest 
solution at the most decision point, it is worth trying other 
complex, more sophisticated algorithms. 

In addition to common strategies, it is possible to refer to 
solutions as "classical insertion procedures" that re-optimize 
the route to be traversed and serviced after the arrival of new 
data or new demands. Such solutions utilize the "rolling 
horizon" principle, which periodically examines and considers 
new demands and requests at certain intervals. [2] 

Metaheuristics can also provide a solution, as they are able 
to provide a large best or approximate value for a 
combinatorial problem with high computational requirements 
approximate. Similar to the optimization solution in this 
paper, the Decision Support for Vehicle Dispatching Using 
Genetic Programming research is also based on evolutionary 
algorithms. The difference is that genetic programming was 
used by the authors, and the order assignment is sequential. 
[3] 

MIP, i.e., ’mixed integer programming’ based heuristic 
approach is presented in Dynamic Dispatch algorithm. MIP is 
a category of 'integer programming,' where variables are not 
only discrete variables. Its use may occur in transportation 
scheduling; the binary decision variables can indicate the 
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assignments to vehicle routes. The author of Dynamic 
Dispatch works with a time window that optimizes the system 
state based on demand. [4] 

Another work utilizes the backpropagation algorithm of 
neural networks to train a simulated dispatcher to make good 
decisions. The input vectors of the neural network represent 
the description of each courier's assigned location. [5] 

A study like this paper uses a genetic algorithm for 
calculations between couriers and delivery/pick-up points. 
This study distributes both static and dynamic order demands 
among the traveling couriers in this way. However, the 
solution outlined in the study, differing from the 
implementation described in this paper, sequentially assigns 
the orders between moving points in the dynamic phase. [6] 

A similar simulation to the one outlined here was 
developed in the work titled Profit Driven Drone Scheduling 
in Last Mile Food Delivery Networks. This study 
demonstrated the operation of multiple scheduling procedures 
(FCFS, SJF, PS, LLV) in a network of autonomous drones 
across multiple waypoints, considering different scenarios. 
The thesis simulated no-fly zone areas, so one of the tasks for 
the drones was to avoid them. The research has a time function 
that assigns a value to the order according to how long it has 
(not) been delivered. [1] 

III. METHODOLOGY 

This paper focuses on addressing the scheduling and order 

assignment problem dynamically and continuously. It 

introduces mobile drone entities, also known as couriers, that 

deliver orders from restaurants to designated locations of 

customers in a simulated urban environment. The orders are 

randomly generated and treated as movable objects. The 

restaurants are static entities with fixed locations. A key 

aspect of the study is simulating realistic drone behavior, 

including the sensitivity of the scheduling algorithm to 

changes in drone battery levels. Charging stations are created 

as static objects where battery replacements can take place. 

The paper avoids unnecessary details unrelated to the 

problem and focuses on the relevant models and system 

components. 

A. Environment and model 

The simulation environment, with a predefined number of 

objects and their properties, is generated by the executing 

environment, allowing for the study of various scenarios and 

behaviors in a 2D representation while considering the 

vertical movements of drones based on their maximum 

ascending and descending speeds, with the simulation speed 

adjustable before program execution. 

The paper utilizes the properties of an existing 

commercially available drone model from a reliable 

manufacturer instead of a specifically designed drone by a 

large company, aiming to create a realistic and general 

representation of current drone capabilities, with access to all 

necessary attributes publicly disclosed by the manufacturer. 

This model is DJI’s Matrice 300 RTK. [7] 

The energy consumption must be calculated 

continuously, and it is calculated by this formula: 

 

𝐸𝑝𝑚 =  
𝑔𝛴𝑘=1

3 𝑚𝑘

𝑟𝜂
+  

𝑃𝑎

𝑣𝑎𝑖𝑟

 

 

where 𝑃𝑎  is the power required for all avionics on the 

drone [Watt = J/s], 𝑣𝑎𝑖𝑟  is airspeed [m/s], 𝑔  is the 

acceleration of gravity [m/ 𝑠2 ], 𝑚𝑘  is the mass of drone 

component 𝑘 [kg], 𝑟 is lift-to-drag ratio [unitless], and 𝜂 is 

battery and motor power transfer efficiency (from battery to 

propeller) [unitless]. Therefore, 𝐸𝑝𝑚  returns the energy 

required for steady drone flight per unit distance [J/m]. [8] 

The simulated drones fly at 100 meters and travel at their 

maximum speed. The primary safety rule for a drone is that it 

must not fall below a certain energy level. If it does fall below 

the established level, it will switch to emergency mode and 

head to the nearest charging station. According to the 

specifications, the drone can carry a maximum weight of 

2.7kg, rejecting heavier orders, and the simulation limits the 

maximum number of deliveries to 2, with no option for 

transferring a delivery to another drone once assigned. The 

states that the drones can pick up are airborne, charging, 

transfer, and at-rest states, with a total of 7 such states 

distinguished in the simulation. 

The restaurants in the model have a limited role compared 

to the drone model. They "prepare" orders at their 

coordinates. There is an infinite number of available landing 

slots for drones to execute order pickups. While the drones 

handle loading the food into their delivery units, they are 

unaffected by other drones' movements or states. 

The restaurant will handle multiple orders, each with its 

own order ID and weight, which are necessary data for the 

program's operation. The weight of the orders will indicate 

the combined weight of the ordered items, and the program 

will assign random food, drink, and dessert to the orders. The 

generation of orders will be based on Poisson random values, 

and it considers the population density and size of the areas 

of the used map of Budapest. No orders are generated for 

unpopulated areas. Similar to the drones, the orders also go 

through different states with one-way transitions: they start in 

the preparation phase, then become ready, followed by being 

in delivery, and finally, their state changes to delivered. 

A charging station serves as a landing zone for drones to 

start their workday in the simulation and replace their 

batteries if needed, with the capacity to accommodate and 

charge all drones simultaneously. It would be worth 

considering problems and solutions for optimizing the finite 

number of batteries. When drones enter a charging station, 

they automatically receive a fully charged "new" battery 

instead of starting to charge themselves. The battery swap 

takes 40 seconds, and multiple charging stations can be 

created and tested to identify the most efficient operation. In 

the presented general scenario, the location of the charging 

stations were the fairly densely populated, hot spots of 

Budapest. 

B. Precalculations 

As mentioned in the introduction, a genetic algorithm will 

perform system optimization. To provide appropriate data for 

the GA to optimize, preliminary calculations are necessary to 

assess the state and position of various simulation elements. 

The program performs mathematical calculations/formulas in 

the following order: 

• To determine the possible route allocation 

between drones and active, new orders, it’s 

important to identify the objects suitable for 

(1) 
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route allocation. This survey is performed by the 

Dispatcher object, which has knowledge of the 

state of drones and elements of the order queue. 

The essence of this step is to establish an order 

among the completed-by-restaurant or in-

progress orders based on their given importance 

over time. 

• Next, it is necessary to examine which drone-

order pairings are infeasible and then initiate the 

examination of the fulfillment conditions for the 

feasible ones. 

• The third step is calculating the energy loss for a 

drone and the time required for delivering an 

order based on the given information. Here the 

program first checks how many tasks are 

assigned to the drone, and if there are already 

two orders assigned, it does not start the 

calculation because it’s redundant. The formula 

used here distinguishes three cases that 

determine the type of route for the drone. The 

analysis of the algorithm does not consider the 

duration and energy loss of take-off and landing, 

as they are represented by constant time and 

energy values, which are calculated within the 

program. The three cases of route types are the 

following: 

1. Solo: The courier does not have any 

active tasks. If it receives a task, it can 

start fulfilling it immediately. 

2. Comeback: In this case, the examined 

drone has an active task that needs to be 

prioritized for delivery. Assuming the 

feasibility, the algorithm used here 

determines the estimated time required 

to deliver the active order; and then 

returns and delivers the calculated new 

order also, which is the input value of 

the function. 

3. Together: The courier's active task is to 

deliver an order prepared in the same 

restaurant as the input order, which also 

needs a courier to deliver. In this case, 

the program evaluates the time and 

energy cost associated with the drone 

picking up multiple orders 

simultaneously. Certainly, if a route is 

feasible according to both Comeback 

and Together types, the program will 

determine which one is more 

advantageous in terms of time and 

provide that as the output. 

• After gathering the data on possible drone-order 

routes, it is forwarded to the optimization 

module. 

C. Optimization 

The problem described in the paper is stochastic in nature 

and requires a dynamic approach. Unlike hill-climbing 

algorithms, the genetic algorithm can effectively handle 

combinatorial problems and always converge towards the 

global optimum, even in the presence of local optima. The 

implementation discussed in the paper focuses on single-

criterion optimization, considering only the shortest delivery 

time. 

The variables of the algorithm are called individuals. 

These individuals form the set of the algorithm, which is 

referred to as the population. In this set, the individuals 

compete for survival. This survival, which represents the 

speed and strength of a cell, is ensured in the implementation 

by the effectiveness of the individual's solution to the given 

task. The variation of the problem is represented by the 

individual's own collection or sequence of chromosomes in 

the solution. It is through these chromosomes that the state 

and "goodness", the fitness of the individuals can be 

described.  

In the presented solution, the role of individuals is 

fulfilled by arrays that contain the drone-order pairings. The 

elements of these arrays indicate how long it takes for the 

drone to reach the restaurant for each examined route during 

the pre-calculation phase and the time it takes to deliver the 

respective order afterward. These arrays serve as a 

representation of the individuals in the optimization process. 
 

Table I. Example for an individual 
Number 

of 

pairing 

Drone 

ID 

Order 

ID 

Delivery 

time (s) 

Pickup 

time (s) 

Fitness 

sum 

1 4 1 216 400 616 

2 6 2 270 178 448 

3 2 3 542 255 797 

 

The fitness function is defined as follows: 

  

𝑓(𝑥) =  ∑ 𝑡𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦
𝑝𝑖

𝑛

𝑖=1

+ 𝑡𝑝𝑖𝑐𝑘𝑢𝑝
𝑝𝑖  

 

where 𝑖  is the index of the pairing, 𝑛 is the number of 

pairings, 𝑝 is the pairing itself, 𝑡𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦  is the delivery time 

from the restaurant to the address of the customer, 𝑡𝑝𝑖𝑐𝑘𝑢𝑝 is 

the time for the drone to arrive to the restaurant for pickup 

and 𝑥 is the array or individual. 

The initial step in the program is to generate random 

pairings for the distributions. Then, fitness evaluation takes 

place, followed by elitism, where a portion of the best-value 

distributions is saved in an array. During crossover and 

mutation, where the program swaps drone IDs between 

individuals, ensuring that no repetitions occur was necessary 

because a courier can only be assigned one task at a time in a 

single computational round. Therefore, precautions were 

taken to avoid assigning the same task to a courier more than 

once.  

(2) 
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IV. EVALUATION 

Fig. 1. Snapshot from the simulation 

 

Quoting from a research discussing VRP solutions: 

"Strikingly, no standard problem definitions or formulations 

are available for dynamic VRPs. Additionally, to the authors’ 

knowledge, no benchmark instances are available to test and 

compare the proposed solution methods objectively.” [9] 

Regarding simulations, the processes created with the 

program will only partially depict reality. This is influenced 

by the presence of random events, which can occur in various 

ways in real life. The model presented here can be examined 

in operation to answer whether it functions as expected. 
 

Table II. Settings of the genetic algorithm 

Number of individuals 300 

Number of generations 500 

Crossover rate 40% 

Mutation rate 15% 

Elitism rate 5% 

 
Table III. Runtimes of the genetic algorithm with different settings (s) 

 
Number of orders 

5 7 10 15 30 50 100 

N
u

m
b

e
r
 o

f 
d

r
o
n

e
s 

10 0.112 0.138 0.300 0.300 0.300 0.310 0.300 

20 0.105 0.127 0.152 0.247 0.847 0.830 0.840 

40 0.106 0.120 0.145 0.188 0.437 2.950 2.950 

80 0.109 0.118 0.146 0.176 0.306 0.590 12.866 

120 0.106 0.122 0.140 0.179 0.299 0.515 2.688 

150 0.110 0.122 0.140 0.179 0.292 0.490 1.582 

200 0.107 0.122 0.146 0.176 0.295 0.497 1.282 

 

The system only considers maximum as many orders in 

the optimization phase as the number of drones used in that 

particular run, which can lead to stagnation in the data. 

Irregularity can be seen in the data marked in yellow, where 

there is a jump compared to the previous regular pattern. This 

is because as the program tries to optimize the number of 

orders closer to the number of drones, the system needs to 

search for more exchanges during the special crossover and 

mutation processes. 

The simulation was run with different settings to examine 

the program's functionality thoroughly. One run took 6 hours, 

simulating the operations of a 6-hour urban restaurant 

network. The data was saved by the system in a textual format 

during or immediately after the program's execution, 

depending on the data type. 

 
Table IV. Values involved in the simulation 

Simulated handing time at 

customer and at restaurant 
30 seconds 

Battery swap time 40 seconds 

Preparation time of orders 10-20 minutes (randomized) 

Number of restaurants 4 

Number of charging stations 4 

Generated orders ~1600 

Weight of an order 830-1585 gram (randomized) 

 
Table V. Workload of couriers, measured at the end of simulation run 

Drone 

ID 
Number of chargings 

Average measured 

battery level at charging 

station (V) 

1 11 3.495 

2 10 3.530 

3 12 3.631 

4 12 3.619 

5 11 3.528 

6 12 3.577 

7 10 3.429 

 

 

The couriers were occupied in a similar manner, their 

average remaining energy level before battery replacement 

ranged from 3.4V - 3.6V. 

 

 
Fig. 2. Average delivery times with different drone fleets 

 

The expected results align with the system's ability to 

achieve shorter average delivery times with multiple couriers 

and find the most suitable courier for each order more easily. 

With such a level of order frequency, the couriers were able 

to maintain delivery times of approximately 5 minutes. 
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Fig. 3. Distribution of route types with different drone fleets 

 

In changing the route types, it was clear that the more 

drones were available, the more the system favored the 

allocation of single-order routes, which were costly in energy 

but well worth the time, over more complex routes involving 

the delivery of multiple orders. 

 

V. CONCLUSIONS 

The research had a dual purpose: to create a simulation 

that can be used to model food delivery using aerial vehicles 

and to develop a suitable algorithm to optimize the network's 

operation. Both objectives were successfully achieved, and 

the model behaved exactly as expected during the tests. With 

the simulation, it was possible to perform a run where orders 

were continuously generated and drones allocated to 

destinations, thus realizing the collaboration of up to 100 

drones and the simultaneous delivery of over 1500 orders. 

Orders were generated locally weighted to represent the 

behavior of an urban environment. The operation of the 

simulation models was also designed to depict reality as 

accurately as possible. The research paid great attention to 

incorporating the energy consumption of drones as a 

significant factor in the model, thus establishing the physical 

aspect of the model. Order allocations were prepared using a 

mathematical model based on the presented route types. The 

new orders are processed by the system in sets, and the 

optimization is performed using a genetic algorithm [10]. 

Based on the tests, the optimized assignments of orders to 

drones effectively minimized the delivery time as expected, 

although the achieved speed may seem idealistic. To 

accomplish this, a simulation has been developed to generate 

results and visually represent the real-time appearance of 

orders and the functioning of the models [11,12,13]. 

During the setup of the system, a set of rules was created, 

including constraints that do not provide the full range of 

situational possibilities required by a food delivery network. 

In the simulation, delivery drones can handle a maximum of 

two orders simultaneously, and the system assigns only one 

order to a drone during a distribution phase. This 

demonstrates that the presented optimization solution works, 

but it may be necessary to expand the rule set and broaden the 

operational scope in the future. 
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