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Abstract—Couriers of food delivery services are playing a
significant role in urban areas by efficiently delivering packages.
However, the problem of coordinating many couriers cannot be
easily managed. Self-driving vehicles are likely to easily reduce
courier companies' logistical costs soon. This paper explores
how a multi-node drone network can be centrally coordinated
to deliver orders quickly, aiming to achieve customer
satisfaction. Since the number of entities and calculations
outlined in the problem is significantly large, the calculations
require the help of one of the optimization solutions, which is
guided by a genetic algorithm for route planning. This paper
aims to create a simulation that uses the heuristic optimization
algorithm to solve this issue. The goal of the simulation is to
consider as many factors as possible to generate, calculate, and
visualize the environment. Simulated courier drones must work
stably under deterministic and stochastic conditions. The data
provided by the simulation can serve as an estimate of how a
realistic or hypothetical resource system would operate.

Keywords—drone, delivery, optimization, GA, simulation,
VRP

I. INTRODUCTION

The rapid growth of food and package delivery services of
specific companies has significantly influenced urban
environments. These companies have been striving to
efficiently coordinate the delivery of packages and meals to
residents, utilizing various modes of transportation, including
cars, motorcycles, and bicycles. However, the coordination of
many couriers presents a complex problem due to the random
nature of their behavior and the dynamic nature of traffic
conditions.

Researchers have explored alternative solutions to this
challenge, such as using autonomous vehicles and drones.
Autonomous vehicles can reduce logistical costs for delivery
companies in the near future. Drones, in particular, offer
unique and alternative solutions for task execution. Although
drones may not be capable of delivering large quantities, their
ability to bypass existing urban infrastructure limitations
allows for swift delivery, making them a key player in food
delivery.

However, the implementation of drone-based food
delivery faces several obstacles. Many urban areas have
restricted or no-fly zones that limit their access. Additionally,
the absence of gardens or open spaces in some households
poses challenges regarding delivery drop-off. Weather
conditions also impact drone operations, as they cannot
operate reliably and safely under strong winds or heavy
precipitation. This research assumes the optimal conditions
for drone operations are met and focuses on addressing the
central question of centrally coordinating a multi-node drone
network for efficient delivery while prioritizing customer
satisfaction and time efficiency.

This scientific study adopts a heuristic search approach to
provide quantitative data based on realistic conditions and
input parameters. The research methodology involves
dividing the problem into smaller components and creating a
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mathematical model representing the behavior of the system.
By running simulations, the study can offer insights into
potential outcomes and estimates that would be difficult,
expensive, or time-consuming to obtain in real-world
scenarios.

The simulation aims to create a model incorporating
various factors to ensure stable operations of centrally
controlled drones under deterministic and stochastic
conditions. The developed algorithm operates based on
system-specific requirements and constraints. The simulation
data can provide valuable insights into implementing such a
drone delivery system's feasibility, environmental impact, and
cost-effectiveness. It can assist in determining the appropriate
types of drones, identifying suitable environments for the
system, and optimizing the placement of service stations for
drone maintenance, charging, and collection to minimize
costs.

In conclusion, this research focuses on a dynamic variant
of the Vehicle Routing Problem (VRP) called Dynamic
Vehicle Routing Problem (DVRP) within the context of
coordinating drone networks. While existing VRP solutions
address static delivery routes with known locations, this study
explores the dynamic nature of delivery orders. The
simulation-based approach, coupled with the heuristic
optimization algorithm, provides a valuable tool for assessing
the performance and potential of a realistic drone delivery
system.

II. RELATED WORK

Simple scheduling strategies like First Come First Served,
Shortest Job First, or Nearest Neighbor may be useable when
a delivery system needs management [1,2]. Although, to
achieve the best possible, the least expensive, or the fastest
solution at the most decision point, it is worth trying other
complex, more sophisticated algorithms.

In addition to common strategies, it is possible to refer to
solutions as "classical insertion procedures" that re-optimize
the route to be traversed and serviced after the arrival of new
data or new demands. Such solutions utilize the "rolling
horizon" principle, which periodically examines and considers
new demands and requests at certain intervals. [2]

Metaheuristics can also provide a solution, as they are able
to provide a large best or approximate value for a
combinatorial problem with high computational requirements
approximate. Similar to the optimization solution in this
paper, the Decision Support for Vehicle Dispatching Using
Genetic Programming research is also based on evolutionary
algorithms. The difference is that genetic programming was
used by the authors, and the order assignment is sequential.
(3]

MIP, i.e., *'mixed integer programming’ based heuristic
approach is presented in Dynamic Dispatch algorithm. MIP is
a category of 'integer programming,' where variables are not
only discrete variables. Its use may occur in transportation
scheduling; the binary decision variables can indicate the
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assignments to vehicle routes. The author of Dynamic
Dispatch works with a time window that optimizes the system
state based on demand. [4]

Another work utilizes the backpropagation algorithm of
neural networks to train a simulated dispatcher to make good
decisions. The input vectors of the neural network represent
the description of each courier's assigned location. [5]

A study like this paper uses a genetic algorithm for
calculations between couriers and delivery/pick-up points.
This study distributes both static and dynamic order demands
among the traveling couriers in this way. However, the
solution outlined in the study, differing from the
implementation described in this paper, sequentially assigns
the orders between moving points in the dynamic phase. [6]

A similar simulation to the one outlined here was
developed in the work titled Profit Driven Drone Scheduling
in Last Mile Food Delivery Networks. This study
demonstrated the operation of multiple scheduling procedures
(FCFS, SJF, PS, LLV) in a network of autonomous drones
across multiple waypoints, considering different scenarios.
The thesis simulated no-fly zone areas, so one of the tasks for
the drones was to avoid them. The research has a time function
that assigns a value to the order according to how long it has
(not) been delivered. [1]

III. METHODOLOGY

This paper focuses on addressing the scheduling and order
assignment problem dynamically and continuously. It
introduces mobile drone entities, also known as couriers, that
deliver orders from restaurants to designated locations of
customers in a simulated urban environment. The orders are
randomly generated and treated as movable objects. The
restaurants are static entities with fixed locations. A key
aspect of the study is simulating realistic drone behavior,
including the sensitivity of the scheduling algorithm to
changes in drone battery levels. Charging stations are created
as static objects where battery replacements can take place.
The paper avoids unnecessary details unrelated to the
problem and focuses on the relevant models and system
components.

A. Environment and model

The simulation environment, with a predefined number of
objects and their properties, is generated by the executing
environment, allowing for the study of various scenarios and
behaviors in a 2D representation while considering the
vertical movements of drones based on their maximum
ascending and descending speeds, with the simulation speed
adjustable before program execution.

The paper utilizes the properties of an existing
commercially available drone model from a reliable
manufacturer instead of a specifically designed drone by a
large company, aiming to create a realistic and general
representation of current drone capabilities, with access to all
necessary attributes publicly disclosed by the manufacturer.
This model is DJI’s Matrice 300 RTK. [7]

The energy consumption must be calculated
continuously, and it is calculated by this formula:
9Zi=amy P
gy, = L= Fa (M

m Vair

where P, is the power required for all avionics on the
drone [Watt = J/s], vy, is airspeed [m/s], g is the
acceleration of gravity [m/s?], m, is the mass of drone
component k [kg], r is lift-to-drag ratio [unitless], and 1 is
battery and motor power transfer efficiency (from battery to
propeller) [unitless]. Therefore, E,, returns the energy
required for steady drone flight per unit distance [J/m]. [8]

The simulated drones fly at 100 meters and travel at their
maximum speed. The primary safety rule for a drone is that it
must not fall below a certain energy level. If it does fall below
the established level, it will switch to emergency mode and
head to the nearest charging station. According to the
specifications, the drone can carry a maximum weight of
2.7kg, rejecting heavier orders, and the simulation limits the
maximum number of deliveries to 2, with no option for
transferring a delivery to another drone once assigned. The
states that the drones can pick up are airborne, charging,
transfer, and at-rest states, with a total of 7 such states
distinguished in the simulation.

The restaurants in the model have a limited role compared
to the drone model. They "prepare" orders at their
coordinates. There is an infinite number of available landing
slots for drones to execute order pickups. While the drones
handle loading the food into their delivery units, they are
unaffected by other drones' movements or states.

The restaurant will handle multiple orders, each with its
own order ID and weight, which are necessary data for the
program's operation. The weight of the orders will indicate
the combined weight of the ordered items, and the program
will assign random food, drink, and dessert to the orders. The
generation of orders will be based on Poisson random values,
and it considers the population density and size of the areas
of the used map of Budapest. No orders are generated for
unpopulated areas. Similar to the drones, the orders also go
through different states with one-way transitions: they start in
the preparation phase, then become ready, followed by being
in delivery, and finally, their state changes to delivered.

A charging station serves as a landing zone for drones to
start their workday in the simulation and replace their
batteries if needed, with the capacity to accommodate and
charge all drones simultaneously. It would be worth
considering problems and solutions for optimizing the finite
number of batteries. When drones enter a charging station,
they automatically receive a fully charged "new" battery
instead of starting to charge themselves. The battery swap
takes 40 seconds, and multiple charging stations can be
created and tested to identify the most efficient operation. In
the presented general scenario, the location of the charging
stations were the fairly densely populated, hot spots of
Budapest.

B. Precalculations

As mentioned in the introduction, a genetic algorithm will
perform system optimization. To provide appropriate data for
the GA to optimize, preliminary calculations are necessary to
assess the state and position of various simulation elements.
The program performs mathematical calculations/formulas in
the following order:

e To determine the possible route allocation
between drones and active, new orders, it’s
important to identify the objects suitable for
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route allocation. This survey is performed by the
Dispatcher object, which has knowledge of the
state of drones and elements of the order queue.
The essence of this step is to establish an order
among the completed-by-restaurant or in-
progress orders based on their given importance
over time.

e Next, it is necessary to examine which drone-
order pairings are infeasible and then initiate the
examination of the fulfillment conditions for the
feasible ones.

e  The third step is calculating the energy loss for a
drone and the time required for delivering an
order based on the given information. Here the
program first checks how many tasks are
assigned to the drone, and if there are already
two orders assigned, it does not start the
calculation because it’s redundant. The formula
used here distinguishes three cases that
determine the type of route for the drone. The
analysis of the algorithm does not consider the
duration and energy loss of take-off and landing,
as they are represented by constant time and
energy values, which are calculated within the
program. The three cases of route types are the
following:

1. Solo: The courier does not have any
active tasks. If it receives a task, it can
start fulfilling it immediately.

2. Comeback: In this case, the examined
drone has an active task that needs to be
prioritized for delivery. Assuming the
feasibility, the algorithm used here
determines the estimated time required
to deliver the active order; and then
returns and delivers the calculated new
order also, which is the input value of
the function.

3. Together: The courier's active task is to
deliver an order prepared in the same
restaurant as the input order, which also
needs a courier to deliver. In this case,
the program evaluates the time and
energy cost associated with the drone
picking up multiple orders
simultaneously. Certainly, if a route is
feasible according to both Comeback
and Together types, the program will
determine  which one is more
advantageous in terms of time and
provide that as the output.

e  After gathering the data on possible drone-order
routes, it is forwarded to the optimization
module.

C. Optimization

The problem described in the paper is stochastic in nature
and requires a dynamic approach. Unlike hill-climbing
algorithms, the genetic algorithm can effectively handle
combinatorial problems and always converge towards the
global optimum, even in the presence of local optima. The
implementation discussed in the paper focuses on single-

criterion optimization, considering only the shortest delivery
time.

The variables of the algorithm are called individuals.
These individuals form the set of the algorithm, which is
referred to as the population. In this set, the individuals
compete for survival. This survival, which represents the
speed and strength of a cell, is ensured in the implementation
by the effectiveness of the individual's solution to the given
task. The variation of the problem is represented by the
individual's own collection or sequence of chromosomes in
the solution. It is through these chromosomes that the state
and "goodness", the fitness of the individuals can be
described.

In the presented solution, the role of individuals is
fulfilled by arrays that contain the drone-order pairings. The
elements of these arrays indicate how long it takes for the
drone to reach the restaurant for each examined route during
the pre-calculation phase and the time it takes to deliver the
respective order afterward. These arrays serve as a
representation of the individuals in the optimization process.

Table 1. Example for an individual

Nur;lfber Drone Order Delivery Pickup Fitness
.. ID ID time (s) time (s) sum
pairing
1 4 1 216 400 616
2 6 2 270 178 448
3 2 3 542 255 797
The fitness function is defined as follows:
n
f(x) = tsélivery + t}fiickup (2)
i=1

where i is the index of the pairing, n is the number of
pairings, p is the pairing itself, tyeivery is the delivery time
from the restaurant to the address of the customer, t,;cxyyp 18
the time for the drone to arrive to the restaurant for pickup
and x is the array or individual.

The initial step in the program is to generate random
pairings for the distributions. Then, fitness evaluation takes
place, followed by elitism, where a portion of the best-value
distributions is saved in an array. During crossover and
mutation, where the program swaps drone IDs between
individuals, ensuring that no repetitions occur was necessary
because a courier can only be assigned one task at a time in a
single computational round. Therefore, precautions were
taken to avoid assigning the same task to a courier more than
once.
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IV. EVALUATION

A i g 7

Fig. 1. Snapshot from the simulation

Quoting from a research discussing VRP solutions:
"Strikingly, no standard problem definitions or formulations
are available for dynamic VRPs. Additionally, to the authors’
knowledge, no benchmark instances are available to test and
compare the proposed solution methods objectively.” [9]

Regarding simulations, the processes created with the
program will only partially depict reality. This is influenced
by the presence of random events, which can occur in various
ways in real life. The model presented here can be examined
in operation to answer whether it functions as expected.

Table II. Settings of the genetic algorithm

. Kelemen and S. Szénasi « Optimization and Representation of a Network of Food Delivery Drones in Simulation

during or immediately after the program's execution,
depending on the data type.

Table IV. Values involved in the simulation
Simulated handing time at
customer and at restaurant

30 seconds

Battery swap time 40 seconds

Preparation time of orders 10-20 minutes (randomized)

Number of restaurants 4

Number of charging stations 4
~1600
830-1585 gram (randomized)

Generated orders

Weight of an order

Table V. Workload of couriers, measured at the end of simulation run

Drone Average measured
Number of chargings battery level at charging
ID )
station (V)

! 11 3.495

2 10 3.530

3 12 3.631

4 12 3.619

> 1 3.528

6 12 3.577

7 10 3429

120 0.106 0.122 0.140 0.179 0.299 0.515 2.688

Number of drones

150 0.110 0.122 0.140 0.179 0.292 0.490 1.582

200 0.107 0.122 0.146 0.176 0.295 0.497 1.282

The system only considers maximum as many orders in
the optimization phase as the number of drones used in that
particular run, which can lead to stagnation in the data.
Irregularity can be seen in the data marked in yellow, where
there is a jump compared to the previous regular pattern. This
is because as the program tries to optimize the number of
orders closer to the number of drones, the system needs to
search for more exchanges during the special crossover and
mutation processes.

The simulation was run with different settings to examine
the program's functionality thoroughly. One run took 6 hours,
simulating the operations of a 6-hour urban restaurant
network. The data was saved by the system in a textual format

- The couriers were occupied in a similar manner, their
Number of individuals 300 average remaining energy level before battery replacement
Number of generations 500 ranged from 3.4V - 3.6V.
Crossover rate 40%
Mutation rate 15% 350
—
iy 5. O 300
Elitism rate 5% 22
o ¥ 25
> %]
= ¥ 200
Table III. Runtimes of the genetic algorithm with different settings (s) —g —8 150
Number of orders o =
Sp © 100
5 7 10 15 30 50 100 E ‘45 50
10 0112 | 0138 | 0300 | 0300 | 0300 | 0310 | 0.300 2 o
ZE O
20 0105 | 0127 | 0152 | 0247 | 0847 | 0830 | 0.840 o 60 80 100
40 0106 | 0120 | 0145 | 0188 | 0437 | 2950 | 2.950 Number of drones
80 0.109 0.118 0.146 0.176 0.306 0.590 12.866 Flg 2. Average delivery times with different droneﬂeets

The expected results align with the system's ability to
achieve shorter average delivery times with multiple couriers
and find the most suitable courier for each order more easily.
With such a level of order frequency, the couriers were able
to maintain delivery times of approximately 5 minutes.

1400
1200

1000
800
600
400
ol al s
0
60 80 100

Number of drones

Number of order
assignments to couriers
o

together M comeback M solo
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Fig. 3. Distribution of route types with different drone fleets

In changing the route types, it was clear that the more
drones were available, the more the system favored the
allocation of single-order routes, which were costly in energy
but well worth the time, over more complex routes involving
the delivery of multiple orders.

V. CONCLUSIONS

The research had a dual purpose: to create a simulation
that can be used to model food delivery using aerial vehicles
and to develop a suitable algorithm to optimize the network's
operation. Both objectives were successfully achieved, and
the model behaved exactly as expected during the tests. With
the simulation, it was possible to perform a run where orders
were continuously generated and drones allocated to
destinations, thus realizing the collaboration of up to 100
drones and the simultaneous delivery of over 1500 orders.

Orders were generated locally weighted to represent the
behavior of an urban environment. The operation of the
simulation models was also designed to depict reality as
accurately as possible. The research paid great attention to
incorporating the energy consumption of drones as a
significant factor in the model, thus establishing the physical
aspect of the model. Order allocations were prepared using a
mathematical model based on the presented route types. The
new orders are processed by the system in sets, and the
optimization is performed using a genetic algorithm [10].
Based on the tests, the optimized assignments of orders to
drones effectively minimized the delivery time as expected,
although the achieved speed may seem idealistic. To
accomplish this, a simulation has been developed to generate
results and visually represent the real-time appearance of
orders and the functioning of the models [11,12,13].

During the setup of the system, a set of rules was created,
including constraints that do not provide the full range of
situational possibilities required by a food delivery network.
In the simulation, delivery drones can handle a maximum of
two orders simultaneously, and the system assigns only one
order to a drone during a distribution phase. This
demonstrates that the presented optimization solution works,
but it may be necessary to expand the rule set and broaden the
operational scope in the future.
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