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Abstract—Signature verification is essential in banking, judi-
cial, and governmental institutions. This study presents an offline
signature authentication system based on a lightweight Siamese
Neural Network (SNN) with metric learning. Unlike large CNN-
based based approaches that rely on large datasets and complex
architectures, this method utilizes extensive preprocessing and a
compact CNN architecture to reduce computational cost while
maintaining competitive accuracy. The images are pre-processed
before being fed to the two-headed architecture; the system based
on denoised, cropped and centered images achieved accuracy
of 80-85% on the CEDAR and BHSig260 datasets, while using
approximately 1.93 million parameters, significantly fewer than
deep CNN-based approaches like state-of-the-art SigNet (10M+
parameters). The results demonstrate that effective preprocessing
and hyperparameter tuning can enable data-efficient signature
verification without requiring large-scale datasets.

Index Terms—signature verification, siamese neural network,
metric learning, contrastive learning, image preprocessing

I. INTRODUCTION

Signature forgery is one of the most common and rec-
ognized methods of identity fraud, highlighting the critical
need for robust signature authentication systems to distinguish
between genuine and forged signatures.

The authentication of signatures holds significant impor-
tance in banking, legal frameworks, and security systems,
as well as in the daily lives of individuals. Furthermore,
even legitimate users may occasionally fail to reproduce their
signature consistently. Historically, signature verification was a
manual process handled by professionals such as bank clerks
or postal workers, prone to human error [1]. With techno-
logical advancements, automating this process has become
increasingly viable.

Signature verification systems perform two primary func-
tions: verifying the legitimacy of a signature, which is the
authentication step. The difficult part is to match a signature
to an individual, which step is referred to as identification.
These systems leverage databases to compare input signatures
with stored samples, determining their validity or assigning
them to a specific individual. Online systems utilize dynamic
properties [2] such as speed and pressure captured during
signature creation; offline systems, which analyze static hand-
written signatures, are particularly useful in document-based
workflows where real-time data capture is not possible.

979-8-3315-9771-9/25/$31.00 ©2025 IEEE

Offline signature verification remains essential in many
traditional workflows, this project aims to develop a machine
learning-based solution for authentication and identification.

Metric learning is a machine learning paradigm that trains
models to learn a similarity function by mapping input samples
to an embedding space, where similar instances are placed
closer together while dissimilar instances are pushed apart.
Contrastive learning is a specific metric learning method that
optimizes a model by comparing paired samples; the model
minimizes the distance between similar pairs and maximizes
the distance between dissimilar pairs.

The aim of this study is to apply metric learning to discrim-
inate genuine and forged signatures and ensure reliable identi-
fication and reduce risks of fraud. Unlike most deep learning-
based signature verification systems that rely on large datasets
and deep networks, this approach utilizes a lightweight CNN
with extensive preprocessing and metric learning, making it
computationally efficient and data-efficient.

II. RELATED WORK

The field of signature verification has been extensively
studied, ranging from handcrafted feature extraction to deep
learning-based methods. Offline signature verification, which
analyzes static images of handwritten signatures, has received
significant attention due to its relevance in paper-based work-
flows.

Signature verification has evolved from early handcrafted
feature extraction methods to modern deep learning-based
approaches. While traditional techniques rely on geometric
and statistical features [3], they struggle with high intra-class
variability, due to their inability to generalize across different
handwriting styles [4]. Deep learning methods address this
limitation by automatically learning robust features from raw
signature images [5], reducing the need for manual feature
engineering.

A. Similar Projects

One of the foundational studies in contrastive learning-based
signature verification was conducted by Bromley et al. [6],
introducing the Siamese Time Delay Neural Network. This
system utilized a digital signature capture device to record
dynamic features such as pen speed and pressure, coupled with
preprocessing steps like size normalization and noise filtering.
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By testing two architectures with varying layer configurations,
the study introduced Siamese Neural Networks (SNNs), a
shared-weight architecture that can effectively learn similarity
metrics for handwritten signatures.

Subsequent research emphasized writer-independent sys-
tems to improve scalability by consolidating data into a
unified model [7]. These approaches use SNNs with twin
Convolutional Neural Networks (CNNs) to learn feature rep-
resentations. A one-shot learning approach further optimized
these models by minimizing data requirements and enabling
threshold-based classification.

A more recent approach by Xiao and Ding employed
focal-loss functions to address data imbalance in signature
verification systems [8]. This model combined original and
enhanced input images, utilizing convolutional layers and
modular data weighting to improve feature extraction and
classification across diverse datasets.

Other advancements in the field include triplet loss-based
solutions, where genuine, forged, and reference signatures
were used to optimize intra-class and inter-class distances [9].
Unlike contrastive loss, which considers only paired inputs,
triplet loss optimizes feature embeddings using three samples:
an anchor, a positive, and a negative [10]. This approach
refines intra-class compactness and inter-class separation. Sim-
ilarly, CNN-based systems incorporated preprocessing tech-
niques such as noise reduction and normalization to enhance
input quality, extended with classification using Support Vector
Machines (SVMs) [11]. A deep CNN model featuring 18
layers extended this approach, focusing on edge detection and
so-called critical feature extraction [12].

Wei et al. [13] introduced the Inverse Discriminative Net-
work along with a novel collection of datasets for chinese
signatures. The proposed architecture is based on the siamese
architecture, and extends it by adding inverse images and com-
paring them pair-by-pair. The resulting network provides three
decisions, that are merged into a single output. This approach
singificantly reduced the False Rejection Rate (FRR), and
slightly improved accuracy on generally accepted benchmark
datasets, such as CEDAR [14]. The authors also published the
collected datasets under the name BHSig.

SigNet by Dey et al. [15] is a well-known baseline in signa-
ture verification research. Utilizing SNNs with Deep CNNs as
twin sub-networks, it applies contrastive loss and Euclidean
distance for classification. Preprocessing includes resizing,
inversion, and normalization, while architectural features like
Local Response Normalization to enhance performance and
generalization across datasets. It is worth mentioning that
while SigNet is based on a deep CNN trained on large datasets,
our proposed approach applies more extensive preprocessing
and a smaller neural network, maintaining competitive accu-
racy with fewer parameters.

III. METHODOLOGY

This section describes the methodology used to implement
the offline signature verification system based on image pre-
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Fig. 1. The original image and corresponding histogram after loading.

processing, siamese-architectured CNN using contrastive loss
based on euclidean distance in the embedded space.

A. Image preprocessing

Since signature images exhibit variations due to noise, dis-
tortion, and inconsistent alignment, preprocessing is essential
to standardize inputs and enhance model performance. The
preprocessing pipeline is implemented using OpenCV, which
provides efficient image manipulation functions necessary for
noise reduction and feature enhancement. The preprocessing
pipeline consists of six distinct steps:

« Image Reading: The signature image is loaded in 8-bit
grayscale format for subsequent processing (Fig. 1).

« Inversion: Each pixel value is inverted (for 8-bit uint8
representation, technically the value is subtracted from
255). This ensures that the signature is represented in
white on a black background, a format suitable for further
operations.

« Noise Reduction: Gaussian blur is applied with a 5x5
kernel to smooth the image. This is followed by Otsu’s
thresholding for binarization. This step reduces noise and
ensures a clean input for the model (Fig. 2).

o Cropping: The signature region is isolated on the de-
noised image using contour detection, a bounding box
with a 5-pixel margin is applied to remove irrelevant
background; the result is a tightly cropped image.

o Center Alignment: The cropped image is resized and
placed on a blank canvas of predefined dimensions while
preserving its aspect ratio. This step avoids distortion
during resizing and ensures the signature is centered on
the canvas (Fig. 3).

« Normalization and Tensor Conversion: Before feeding
the image into the model, all pixel values are normalized
to the range [0, 1] (for uint8 representation it is done
by dividing by 255). The result is converted into a tensor
format.

This preprocessing pipeline standardizes input images, re-
ducing noise and structural variations, enhancing feature ex-
traction and model robustness in signature verification.
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Fig. 2. The resulting image and corresponding histogram of the noise
reduction step.
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Fig. 3. Cropped and centered image and corresponding histogram.

B. Model Architecture

The custom CNN backbone architecture consists of five
convolutional blocks followed by dense layers, designed to
extract hierarchical feature representations for signature veri-
fication. These feature embeddings are later used in a Siamese
framework for similarity comparison. The architectural details
are detailed in Table I and visualized on Fig 4.

The convolutional backbone contains five blocks of convo-
Iutional and pooling layers, extracting spatial and structural
features from input signatures. A global average pooling
(GAP) layer flattens these representations, which are then
processed by two fully connected layers to generate compact
feature embeddings.

1) Siamese Architectured Neural Network: The Siamese
Neural Network (SNN) is based on two identical CNNs
edscribed previously. Each CNN processes one of the input
signature images, producing a representation in embedded
space. These extracted feature vectors are compared using a
distance layer to quantify similarity.

Euclidean distance [16] is chosen as the distance function as
it captures absolute spatial differences in feature embeddings,
which is crucial in this specific task. Unlike cosine similarity,
which measures angular similarity and ignores magnitude,
Euclidean distance ensures that small variations in signature
structure and spatial alignment are reflected in the embedding
space. Additionally, Euclidean distance aligns naturally with
contrastive loss, it is a typical choice for metric learning

TABLE I
DETAILED ARCHITECTURE OF THE CNN BACKBONE USED IN THE SNN.
NOMENCLATURE FOLLOWS TENSORFLOW / KERAS TERMINOLOGY.

Layer/Block Details Key Parameters Output Shape
Block 1 Conv2D Filters: 32, Kernel: (7,7), Stride: (1,1) | 149 x 214 x 32
LeakyReLU Alpha: 0.3 -
MaxPooling2D Pool size: (2,2), Stride: (2,2) 74 x 107 x 32
Block 2 Conv2D Filters: 64, Kernel: (5,5), Stride: (1,1) 70 x 103 x 64
BatchNormalization - -
LeakyReLU Alpha: 0.3 -
MaxPooling2D Pool size: (2,2), Stride: (2,2) 35 x 51 x 64
Block 3 Conv2D Filters: 128, Kernel: (3, 3), Stride: (1,1) | 33 x 49 x 128
BatchNormalization - -
LeakyReLU Alpha: 0.3 -
MaxPooling2D Pool size: (2,2), Stride: (2,2) 16 x 24 x 128
Block 4 Conv2D Filters: 256, Kernel: (3,3), Stride: (1,1) | 14 x 22 x 256
LeakyReLU Alpha: 0.3 -
Dropout Rate: 0.2 —
Block 5 Conv2D Filters: 512, Kernel: (3, 3), Stride: (1, 1) 12 x 20 x 512
LeakyReLU Alpha: 0.3 -
MaxPooling2D Pool size: (2,2), Stride: (2,2) 6 x 10 x 512
Dropout Rate: 0.2 -
Global Pooling | GlobalAveragePooling2D - 1 x 512
Dense Layer 1 Dense Units: 512, Kernel Reg.: le— 7 -
Dropout Rate: 0.5 —
Dense Layer 2 Dense Units: 128, Kernel Reg.: le—7 —

based solutions. The fixed-scale interpretation allows simple
thresholding for verification tasks, making it an optimal choice
for signature-based authentication.

Euclidean distance can be formulated as:

n

Z(f(Sl)i — f(s2)1)?, (1)

i=1

D(Sla 52) =

where f(s1) and f(s2) are the feature vectors of the input
images s; and s, from the CNN, and n is the dimensionality
of the feature space.

The contrastive loss function is applied to optimize the
SNN. It ensures that similar pairs remain close in the embed-
ding space (intra-class variance is reduced); while dissimilar
pairs are separated by at least a margin m (inter-class separa-
tion is increased). Contrastive loss can be defined as:

1
L(s1,52,y) =(1 - y)QD(sl, s2)°+ o

y%{maX(O, m — D(sq, 52))}2,

where:

e S1,S9: Input signature images.
e y: Binary label (y = 0 for genuine-genuine pairs and
y = 1 for genuine-forged pairs).

e« m: Margin value defining the minimum distance for

dissimilar pairs.

o D: Euclidean distance defined in equation (1).

In this implementation, pairs from the same source (y = 0)
are optimized to have a smaller Euclidean distance, ensuring
their embeddings are closer in the feature space. On the other
hand, negative pairs (where y = 1) are penalized if their
distance is less than the margin m, pushing their embeddings
farther apart.

2) Optimization and Training: The RMSprop optimizer
was chosen due to its ability to adaptively adjust learning
rates per parameter, helping stabilize training in the contrastive
learning setting. Adam can perform similarly, however it is
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Fig. 4. Diagram of the CNN backbone used in the SNN, illustrating the
convolutional layers and feature extraction pipeline.

more powerful when performing updates which can cause
instability in the embedding space. RMSprop ensures smoother
convergence of feature representations.

Standard stochastic gradient descent approach often con-
verges more slowly for contrastive loss, RMSprop is efficient
in separating embeddings in the metric space [17].

To improve generalization, early stopping was applied to
abort training when validation performance stopped improv-
ing; also, a learning rate scheduler reduced the learning rate
by a factor of 0.1 upon stagnation.

IV. EXPERIMENTAL SETUP AND TRAINING

This section describes the experimental setup, including
dataset preparation, training procedures. The performance of
the model is measured using multiple metrics. Additionally, t-
Distributed Stochastic Neighbor Embedding (t-SNE) [18], [19]
was employed to visualize feature embeddings, and confusion
matrix offers detailed metrics.

A. Dataset

Three publicly available datasets were used for evaluation:
CEDAR, BHSig260-Bengali, and BHSig260-Hindi. To en-
sure robust training, datasets were balanced by including an
equal number of genuine-genuine and genuine-forged pairs.
The CEDAR dataset, comprising 55 authors, yielded 30.360
pairs (552 per author) after balancing. The BHSig260-Bengali
dataset, with 100 authors, resulted in 55.200 balanced pairs,
while the BHSig260-Hindi dataset, with 160 authors, con-
tained 88.320 pairs. For all datasets, 80% of the pairs were
used for training, and the remaining 20% were reserved to test
performance. From the training subset 10% of the samples
were split as validation set, elements not directly used in
training, instead used to detect overfitting. This approach en-
sured that training, validation, and testing sets were completely
independent, with no overlap of authors across splits.

TABLE II

BALANCED PAIR DISTRIBUTION FOR TRAINING, VALIDATION, AND

TESTING

Dataset Authors | Training Pairs | Validation Pairs | Test Pairs

CEDAR 55 21,859 2,429 6,072
BHSig-Bengali 100 39,744 4,416 11,040
BHSig-Hindi 160 63,590 7,066 17,664

B. Implementation

Tensorflow and OpenCV was applied during implementa-
tion using Python.

Signature images were resized to 155 x 220 x 1, which is
the input dimensionality of the backbone CNN. Each batch
contained 32 signature pairs, with an equal distribution of
genuine-genuine and genuine-forged samples, ensuring bal-
anced learning during training.

To improve generalization and robustness to signature vari-
ability, data augmentation was applied during training. Trans-
formations included random horizontal flips to account for
minor writing distortions, and brightness and contrast adjust-
ments to simulate variations in document scanning conditions.
These transformations introduced variability in the training
data while preserving essential features of the signatures.

The model was optimized using the contrastive loss func-
tion, with a margin set to m = 1.2. The threshold distance
was set to 0.5 during evaluation as decision boundary. The
RMSprop optimizer was employed with an initial learning rate
of le™.

Regularization techniques, such as dropout and kernel reg-
ularization, were implemented to prevent overfitting. Dropout
rate was set to 0.5 in fully connected layers, and to 0.2 in
convolutional layers. Weight-decay based L2 kernel regularizer
was applied with a factor of A = le™%.

Early stopping was configured to monitor the validation
loss, terminating training if no improvement for three consecu-
tive training steps. Additionally, the ReduceLROnPlateau
callback was used to adjust the learning rate dynamically,
reducing it by a factor of 0.1 if the validation loss did not
improve after two epochs, down to a minimum of 1e~6.

Training was conducted for a maximum of 20 training steps.
It is worth mentioning that instead the word “epoch”, training
step” is used, as during training a subset of all possible
combinations were used. The final model was selected based
on the lowest validation loss.

V. RESULTS AND EVALUATION

This section presents the evaluation results of the proposed
SNN across three datasets: CEDAR, BHSig260-Bengali, and
BHSig260-Hindi. Performance was assessed using training,
validation, and testing accuracy, along with t-SNE visualiza-
tions to analyze feature embedding separability. The impact
of dataset characteristics, particularly noise in CEDAR and
dataset scale in BHSig260, is discussed.

The CEDAR dataset posed the greatest challenge due to
significant noise and scanning artifacts, resulting in testing

000344



INES 2025 « IEEE 29th International Conference on Intelligent Engineering Systems ¢« June 11-13, 2025 « Palermo, Italy

Fig. 5. t-SNE visualization before-after training on the training set (CEDAR)

Fig. 6. t-SNE visualization before-after training on the testing set (CEDAR)

accuracy of 80%. Validation accuracy reached 80%, while
training accuracy peaked at 99%. The t-SNE visualizations
(Fig. 5 and Fig. 6) illustrate the clustering of genuine and
forged pairs before and after training, indicating the model’s
capacity to distinguish between the classes effectively.

The BHSig260-Bengali dataset yielded a validation accu-
racy of 85% and a testing accuracy of 84%, highlighting the
model’s robustness when applied to clean and balanced data.
Similarly, the BHSig260-Hindi dataset achieved validation
accuracy of 88% and testing accuracy of 87%, underscoring
the model’s ability to handle larger datasets effectively. In both
datasets, training accuracy remained at 99%, suggesting that
the model successfully learned the underlying patterns without
overfitting, as evidenced by consistent validation and testing
results.

A. Further results

Although one-shot learning was not the primary focus of
this study, additional experiments were conducted to assess the
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Fig. 7. t-SNE visualization before-after training on the training set
(BHSig260-Hindi)

Fig. 8. t-SNE visualization before-after training on the testing set (BHSig260-
Hindi)
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Fig. 9. The confusion matrix on the BHSig260-Hindi dataset

model’s ability to recognize unseen signatures using distance-
based one-shot testing. In one-shot testing, a single reference
signature from the test dataset is compared against N — 1 sig-
natures belonging to different authors. This method primarily
demonstrates the model’s capability for recognition tasks, such
as character recognition, even though it is not the primary
focus of this implementation.

In this approach, a parameter k£ determines the number of
test runs. The test is considered successful if the positive pair
produces the smallest distance among the comparisons. The
function calculates the success rate as a percentage based on
the ratio of successful runs to total runs.

It is worth noting that the inherent prediction process of
the model on unseen data can also be regarded as a form of
one-shot testing, as the network evaluates completely novel
signature pairs during inference.

TABLE III
SUMMARY OF MODEL PERFORMANCE ACROSS DATASETS, COMPARING
TRAINING, VALIDATION, AND TESTING ACCURACY.

Dataset Training Accuracy (%) | Validation Accuracy (%) | Testing Accuracy (%)
CEDAR 99 80 80
BHSig260-Bengali 99 85 85
BHSig260-Hindi 99 88 87
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VI. CONCLUSION

The implemented model demonstrated consistently strong
performance across all tested datasets, achieving up to 87%
accuracy on BHSig260-Hindi and maintaining robust perfor-
mance even on challenging datasets like CEDAR (80%). The
method achieves comparable accuracy to larger architectures
like SigNet while using significantly fewer training samples
and a more computationally efficient model, making it suitable
for resource-constrained environments.

The primary objective of distinguishing between genuine
and forged signatures relative to a reference was achieved with
high accuracy. Although the model was not primarily designed
for one-shot learning, additional experiments confirmed its
ability to generalize to unseen signatures.

One area requiring further refinement is the overfitting
observed during training. Despite applying regularization tech-
niques (dropout, L2 weight decay) and hyperparameter tuning,
further optimization is needed. Future work could explore
increasing data augmentation diversity, adjusting dropout rates,
or experimenting with contrastive loss variations to improve
generalization [20].
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