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Abstract—Jigsaw puzzles are a popular form of entertainment. 

Solving them with the help of computers raises several interesting 

problems, and has been the subject of many published papers in 

the past. In this paper, an approach to creating a program that 

uses pictures of real puzzle pieces to reconstruct the full puzzle 

image is presented. A photography technique is described that 

results in consistently recognizable images, which are used to 

extract features of the puzzle pieces. These features are then 

compared using two similarity algorithms - Hausdorff distance 

and Dynamic Time Warping. Three different puzzle assembly 

strategies that use these comparisons are presented, along with 

additional logic rules to solve the full puzzle. Using these the final 

program is capable of solving two different, 25-piece jigsaw 

puzzles. A comparison of the different similarity measures and 

assembly algorithms in the scope of the problem is also presented. 

Keywords— jigsaw puzzle, Hausdorff distance, dynamic time 

warping, computer vision 

I. INTRODUCTION 

The origin of jigsaw puzzles can be traced back to the 18th 
century. Today there are many different types of puzzles, the 
most common being flat, 2-dimensional ones where every 
piece has four sides. A side can either be concave, convex, or 
straight, with the latter meaning that a particular edge 
constitutes the outside border of the puzzle. In the context of 
this paper, we are only examining puzzles that fit this 
description. 

The goal is to create a program that, using pictures taken 
of real puzzle pieces, is able to automatically assemble the 
whole puzzle. To do this, the program needs several 
components. First, it needs to recognize the puzzle pieces in 
the input images and extract as much relevant information 
about them as possible. Then, using this data, the program 
should be able to compare two given puzzle pieces and decide 
how good of a fit they are. Using these comparisons and an 
assembly algorithm then arranges the pieces in the correct 
order. Finally, based on this the expected output of the 
program is a graphical assembly of the input puzzle pieces. 

Computer-based, automatic puzzle solving has been the 
subject of many papers and theses. It is a problem that is easy 
to grasp, but as outlined above, the solution is not trivial and 
requires many different techniques working together to 
accomplish. Furthermore, it is a problem that can be made 
analogous to many other ones, from a variety of fields.  

II. RELATED WORK 

The first paper [1] on this subject outlines many basic 
principles that are to be considered when tackling this 
problem. It describes two different kinds of algorithms - 
pictorial, one where the image of the puzzle piece is also 
considered when finding matches, and apictorial, which solely 

focuses on the geometric shape of the puzzle pieces. The paper 
shows an apictorial algorithm, which is based on the existing 
problem of pattern matching. It also goes on to discuss the 
issues of puzzle pieces being similar to each other, which 
might result in incorrect matches and makes efforts to make 
the algorithm less sensitive to noise.  

While this provides a good starting point, it does not 
discuss the acquisition of puzzle pieces, opting instead to use 
near-perfect descriptors of the shape of edges. Not only does 
this prevent the utilization of color as a potential property to 
find matches by, but perfect geometric information also 
should not be assumed when working with photographs of 
puzzle pieces. Acquiring the precise shape of pieces requires 
specific photography techniques, such as scanning or 
illuminating the pieces from below [2]. 

Systems that use pictures of puzzle pieces as input [3] 
require additional steps at the start. First, the puzzle piece 
needs to be recognized from the picture. This can be seen as a 
type of foreground detection, with the foreground being the 
puzzle piece, and everything else the background. This 
detection needs to be as precise as possible since inaccuracies 
during the detection of the border impact the later stages of the 
algorithm. With the border found, the puzzle piece can be 
segmented from the image. The next step is separating the 
border into individual edges [4]. This can be done by 
exploiting the pieces' unique property of always having four 
separate sides, each adjoined by two corners. If the corners are 
found, splitting the border is trivial.  

Finding the corners of the puzzle piece can be done in 
multiple ways. This includes existing corner detection 
algorithms, like Harris' [5] that work with the contour of the 
puzzle piece, or one that converts the outline into chain code 
and finds corners using that. With the edges separated, they 
can be classified and stored along with features that are later 
to be used during comparisons. 

In principle, comparing two puzzle edges is done with a 
distance function, the inner workings of which can vary 
greatly. It can compare geometric information, such as the 
shape, length, or other features, or pictorial data, like the color 
or intensity changes along the edges. Combining two or more 
measurements with different weighing is also possible [6]. 

Likewise, there are many ways of assembling the whole 
puzzle. Real-life approaches, such as sorting the pieces by 
type and assembling the frame first can be used, as well as 
strategies that are infeasible for humans but can be achieved 
using computers. These can include calculating all possible 
matches in advance, brute force or backtrack-based 
assemblies, as well as more modern, loop-based solutions [7]. 
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III. METHODOLOGY 

Our approach to the problem is based on input images that 
require as little post-processing as possible. Taking photos of 
the puzzle pieces already distorts them to a degree, and since 
we intend to use the shape of the edges for comparisons, 
avoiding any further modification to the images is vital. This 
is achieved by illuminating the pieces from the bottom using 
a screen. With this method, a high contrast, white background 
can be used which makes for precise thresholding, while also 
eliminating the shadows cast by the pieces that would result in 
misshapen edges during detection. Combined with this 
solution the pictures are also taken from a fixed height, with 
the camera lens parallel to the puzzle piece. This way, the 
detected pieces can be treated relatively to each other, while 
not needing any corrections regarding their angling. Lastly, 
we need to consider the resolution of the taken pictures. 
Increasing the image quality past a certain degree not only 
results in diminishing returns, but slows down the speed of 
detection and provides more opportunities for image errors.  

Thanks to the efforts made during image acquisition, the 
processing of inputs is relatively simple. After applying a 
greyscale filter, a low threshold value can be applied to 
remove the background. The resulting image can be used as a 
mask on the original, as well as for the input of a boundary 
tracing algorithm to find the puzzle piece's contour. As this 
array of border points is the basis of further calculations, it is 
converted into two additional formats for ease of use, polar 
coordinate and chain code representation. The polar 
coordinate form uses the middle of the puzzle piece, 
calculated by averaging the border points, as its reference 
point. 

 

Fig. 1. Locating puzzle piece corners by rectangle approximation 

The next step is identifying the four corners of the puzzle 
piece. We do this by first finding local maxima in the polar 
coordinate representation. Since this solution finds all corners 
as well as the tip of any tabs (convex puzzle side), it needs to 
be refined further. For this, we utilize the property of puzzle 
piece corners being approximately 90° from each other. This 
means that with some inaccuracy the four corners can be 
considered the corners of a rectangle, as seen in Fig. 1. Using 
this criterion we can reliably detect the corners. 

 

Fig. 2. Rotating edge segment with the help of a guide line 

With the corners found, we can divide the contour into 
four sides. This is done by starting at a corner and adding 
subsequent points to the edge until the next corner is reached. 
The edges are rotated so that their starting and end points are 
at the same height, making all edges uniformly aligned. This 
process is shown on Fig. 2. The side is then grouped into one 
of three categories. A line is drawn between the first and last 
points of the edge, and the height difference of the edge points 
and the line is averaged. If this average is around zero, 
meaning the edge does not deviate much from the straight line, 
the side is considered straight. If the points tend to be above 
the line, it is considered a tab or convex side, otherwise, it is 
categorized as a blank or concave. 

After the last step, we have access to all puzzle pieces and 
their important features. The assembly of the whole picture is 
done by two separate modules working in tandem. The 
simpler, more mathematical part conducts comparisons 
between puzzle pieces. It has no information about the whole 
picture, its only task is judging how good of a fit two edges 
make. The module responsible for the whole assembly is more 
complex, handling the assembly logic as well as assigning 
work to the comparer, using the results and a given strategy to 
assemble the whole puzzle. 

Finding the pair of an edge involves taking a group of 
candidate edges, comparing each one to the original edge, and 
selecting the one with the best fitness. The number of 
candidates can be reduced by applying certain logical rules 
when selecting them. First, the pair of a convex edges can only 
ever be a concave one, and vice versa. A straight edge can 
never be the pair of any other edge, so they can be excluded 
from comparisons. Additionally, edges that already have a 
match can't be matched again, and an edge can never have a 
pair that is from the same puzzle piece as itself. These rules 
reduce the number of possible pairings greatly, but there are 
additional observations we can make, exploiting straight 
edges. Let us consider the neighbors of an edge and the two 
other edges that are directly next to it on a puzzle piece. For 
example, the left neighbor of the top edge is the left edge, and 
its right neighbor is the right edge. The following statements 
can be made: 

• if an edge's left neighbor is straight, it can only be 
matched to an edge whose right neighbor is also 
straight 

• if an edge's right neighbor is straight, it can only be 
matched to an edge whose left neighbor is also straight 

These rules are based on the fact that jigsaw puzzles 
always have an unbroken, straight border. Similarly, the 
following can be stated regarding non-border edges: 

• if an edge's left neighbor is not straight, it can only be 
matched to an edge whose right neighbor is also not 
straight 
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• if an edge's right neighbor is not straight, it can only be 
matched to an edge whose left neighbor is also not 
straight 

Using these restrictions the number of comparisons can be 
reduced further, not only resulting in faster matching but 
potentially avoiding false positive pairs. 

Our program is modular in design, meaning the type of 
comparison algorithm and assembly strategy can be swapped 
and combined in any manner. Regarding comparisons, we 
tested two similarity measures: Hausdorff distance and 
Dynamic Time Warping.  

Hausdorff distance is a metric that can be used to compare 
two curves. It is ideal for puzzle edge comparisons, as the two 
shapes don't have to match in length. We use the following 
formula to calculate it, where X and Y are two sides being 
compared. 

max
�∈�

min 	
�, 
� 

The second comparison method tested is Dynamic Time 
Warping. While it's most commonly used for comparing time-
based sequences, the warping aspect can be useful to compare 
edges that are similar in shape, but not in size. 

The assembly module is responsible for positioning the 
puzzle pieces in the correct location and orientation. Since we 
do not provide any external information about the whole 
puzzle picture, the starting point for assembly is always a 
corner piece, which is placed and rotated as the top-left piece. 
It is worth noting that the corner piece is selected at random, 
so it is entirely possible that the initial puzzle piece is not the 
actual top-left piece but another corner. This does not affect 
assembly, and the only consequence is that the output image 
will be rotated. 

The first implemented assembly strategy places pieces in 
row-major order. After the initial corner piece, a matching 
piece is placed to the right of it, which is repeated until the last 
right edge of the row is straight. The next row's starting piece 
is found and placed based on the bottom edge of the previous 
row's first piece. These steps are repeated until the whole 
puzzle is assembled. 

The column-major order assembler works similarly, 
except for building the puzzle column-by-column. 

The third assembly method is based on a popular approach 
when it comes to solving real-life jigsaw puzzles. The core 
idea is constructing the frame of the puzzle first, and then 
filling the inside. Since only pieces with a straight edge are 
part of the frame, those are the only pieces used for 
comparisons when constructing the border. Then, the 
remaining inside pieces are placed in row-major order.  

Since these assemblies provide just a virtual arrangement 
of the pieces, the last module of the program uses masked 
pictures of puzzle pieces to graphically assemble the full 
image. These pieces are positioned on the picture regarding 
other pieces already placed, being rotated to fit better visually 
if necessary.  

IV. EVALUATION 

Testing was conducted using two, 25-piece jigsaw 
puzzles. Each piece was placed and illuminated from the 
bottom using a tablet displaying a static white image, and the 
pictures were taken with a phone fixed above the capture area. 

The program was written in C#, using various features of the 
.NET and Accord.NET frameworks. All measurements are the 
result of multiple test runs, averaged. For testing, 1280 × 720 
pixel resolution pictures were used which proved to be a good 
middle ground between processing speed and image clarity. 

Generally, the most impactful step regarding to the final 
output is image acquisition and detection. If an input image is 
inadequate, the puzzle piece is not detected correctly, resulting 
in wrong descriptors. This makes it harder to find proper edge 
pairs, resulting in incorrect assemblies. Since any information 
lost during the input phase is irrecoverable later, it is important 
to gather as much and as precise data as possible. Detecting 
25 input images took 44.7 seconds on average when done 
serialized, and 37.3 seconds when parallelized. Since 
detecting each piece is a separate task, it can be easily 
parallelized.  

Fig. 3 and 4 show the final results of two datasets. The 
images presented are cropped and rotated for ease of viewing. 

 

Fig. 3. Complete puzzle assembled by the program from the first dataset 

 

Fig. 4. Complete puzzle assembled by the program from the second dataset 

Tables 1 and 2 show the respective runtimes of different 
assembly strategies combined with each comparison 
algorithm for each dataset. 
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TABLE 1  PUZZLE ASSEMBLY RUNTIMES FOR FIRST DATASET 
(MILLISECONDS) 

 Hausdorff Hausdorff, 

additional 

logic 

Dynamic 

Time 

Warping 

Dynamic 

Time 

Warping, 

additional 

logic 

Row-
major 

6 610 2 800 47 619 20 001 

Column-
major 

5 654 2 316 40 642 16 526 

Frame 3 586 2 128 25 932 15 264 

TABLE 2  PUZZLE ASSEMBLY RUNTIMES FOR SECOND DATASET 
(MILLISECONDS) 

 Hausdorff Hausdorff, 

additional 

logic 

Dynamic 

Time 

Warping 

Dynamic 

Time 

Warping, 

additional 

logic 

Row-
major 

7 513 3 128 N/Aa 22 747 

Column-
major 

6 439 2 634 39 798 18 714 

Frame 4 203 2 419 30 802 17 557 
a.
 Incorrectly determined match resulted in an error 

These results show a few peculiarities. First, on average 
the second puzzle’s assembly took more time than the first. 
While they are both 25-piece sets, edge segments from the 
second set on average have 743 points, while edges from the 
first puzzle have only 698. Since the comparisons go over each 
point, this difference adds up, resulting in the difference. 
Second, in both cases row-major assembly was slower than 
column-major assembly. This is for a similar reason – the 
puzzle pieces used for testing are elongated in shape, meaning 
they have two longer and two shorter sides. Since these 
strategies do comparisons on the same side repeatedly, one 
keeps comparing against longer sides, hence the difference in 
speed.  

Based on our testing, Dynamic Time Warping is 
considerably slower than the Hausdorff comparison. This is to 
be expected – while Hausdorff distance is a relatively simple 
shape comparison algorithm using minimum and maximum 
searches, Dynamic Time Warping is more complicated, with 
the manipulation of curves before the comparison is very 
resource intensive. Among the different assembly strategies, 
constructing the frame first and then the inside proved to be 
the fastest. While filtering the pieces based on whether they 
have a straight edge or not introduces some overhead, it is 
negligible compared to the time saved by avoiding futile 
comparisons. The same can be said about introducing 
additional logic, as it works similarly – rejecting match 
candidates early based on their neighboring edges consists of 
four logic checks, which cuts down on the number of later 
comparisons.  

As Table 2 shows, in one case our program failed to 
correctly assemble the puzzle. This happened due to an 
incorrectly matched piece after the initial corner piece was 
placed, resulting in an entirely wrong assembly. This issue 
was solved with the introduction of additional logic checks. 

V. CONCLUSION 

In this paper we presented our approach to building a 
computer-based jigsaw puzzle solver. The basis of this was a 
robust image acquisition method which results in input images 
that require minimal post-processing. We presented and tested 

Hausdorff distance and Dynamic Time Warping as possible 
puzzle edge comparison algorithms. Applying these along 
with different assembly strategies our program was able to 
solve two different, 25-piece puzzles.  

Possible improvements include implementing more 
comparison algorithms and assembly strategies [8], as well as 
testing additional puzzle sets.  
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