

Solving Jigsaw Puzzles Using Computer Vision and
Curve Similarity Measures

Olivér Balogh
John von Neumann Faculty of Informatics

Óbuda University
Budapest, Hungary

NS5CC9@stud.uni-obuda.hu

Zoltán Vámossy
John von Neumann Faculty of Informatics

Óbuda University
Budapest, Hungary

vamossy.zoltan@nik.uni-obuda.hu

Abstract—Jigsaw puzzles are a popular form of entertainment.

Solving them with the help of computers raises several interesting

problems, and has been the subject of many published papers in

the past. In this paper, an approach to creating a program that

uses pictures of real puzzle pieces to reconstruct the full puzzle

image is presented. A photography technique is described that

results in consistently recognizable images, which are used to

extract features of the puzzle pieces. These features are then

compared using two similarity algorithms - Hausdorff distance

and Dynamic Time Warping. Three different puzzle assembly

strategies that use these comparisons are presented, along with

additional logic rules to solve the full puzzle. Using these the final

program is capable of solving two different, 25-piece jigsaw

puzzles. A comparison of the different similarity measures and

assembly algorithms in the scope of the problem is also presented.

Keywords— jigsaw puzzle, Hausdorff distance, dynamic time

warping, computer vision

I. INTRODUCTION

The origin of jigsaw puzzles can be traced back to the 18th
century. Today there are many different types of puzzles, the
most common being flat, 2-dimensional ones where every
piece has four sides. A side can either be concave, convex, or
straight, with the latter meaning that a particular edge
constitutes the outside border of the puzzle. In the context of
this paper, we are only examining puzzles that fit this
description.

The goal is to create a program that, using pictures taken
of real puzzle pieces, is able to automatically assemble the
whole puzzle. To do this, the program needs several
components. First, it needs to recognize the puzzle pieces in
the input images and extract as much relevant information
about them as possible. Then, using this data, the program
should be able to compare two given puzzle pieces and decide
how good of a fit they are. Using these comparisons and an
assembly algorithm then arranges the pieces in the correct
order. Finally, based on this the expected output of the
program is a graphical assembly of the input puzzle pieces.

Computer-based, automatic puzzle solving has been the
subject of many papers and theses. It is a problem that is easy
to grasp, but as outlined above, the solution is not trivial and
requires many different techniques working together to
accomplish. Furthermore, it is a problem that can be made
analogous to many other ones, from a variety of fields.

II. RELATED WORK

The first paper [1] on this subject outlines many basic
principles that are to be considered when tackling this
problem. It describes two different kinds of algorithms -
pictorial, one where the image of the puzzle piece is also
considered when finding matches, and apictorial, which solely

focuses on the geometric shape of the puzzle pieces. The paper
shows an apictorial algorithm, which is based on the existing
problem of pattern matching. It also goes on to discuss the
issues of puzzle pieces being similar to each other, which
might result in incorrect matches and makes efforts to make
the algorithm less sensitive to noise.

While this provides a good starting point, it does not
discuss the acquisition of puzzle pieces, opting instead to use
near-perfect descriptors of the shape of edges. Not only does
this prevent the utilization of color as a potential property to
find matches by, but perfect geometric information also
should not be assumed when working with photographs of
puzzle pieces. Acquiring the precise shape of pieces requires
specific photography techniques, such as scanning or
illuminating the pieces from below [2].

Systems that use pictures of puzzle pieces as input [3]
require additional steps at the start. First, the puzzle piece
needs to be recognized from the picture. This can be seen as a
type of foreground detection, with the foreground being the
puzzle piece, and everything else the background. This
detection needs to be as precise as possible since inaccuracies
during the detection of the border impact the later stages of the
algorithm. With the border found, the puzzle piece can be
segmented from the image. The next step is separating the
border into individual edges [4]. This can be done by
exploiting the pieces' unique property of always having four
separate sides, each adjoined by two corners. If the corners are
found, splitting the border is trivial.

Finding the corners of the puzzle piece can be done in
multiple ways. This includes existing corner detection
algorithms, like Harris' [5] that work with the contour of the
puzzle piece, or one that converts the outline into chain code
and finds corners using that. With the edges separated, they
can be classified and stored along with features that are later
to be used during comparisons.

In principle, comparing two puzzle edges is done with a
distance function, the inner workings of which can vary
greatly. It can compare geometric information, such as the
shape, length, or other features, or pictorial data, like the color
or intensity changes along the edges. Combining two or more
measurements with different weighing is also possible [6].

Likewise, there are many ways of assembling the whole
puzzle. Real-life approaches, such as sorting the pieces by
type and assembling the frame first can be used, as well as
strategies that are infeasible for humans but can be achieved
using computers. These can include calculating all possible
matches in advance, brute force or backtrack-based
assemblies, as well as more modern, loop-based solutions [7].

SACI 2023 • IEEE 17th International Symposium on Applied Computational Intelligence and Informatics • May 23-26, 2023 • Timişoara, Romania

979-8-3503-2110-4/23/$31.00 ©2023 IEEE 000807

20
23

 IE
EE

 1
7t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

A
pp

lie
d

C
om

pu
ta

tio
na

l I
nt

el
lig

en
ce

 a
nd

 In
fo

rm
at

ic
s (

SA
C

I)
 |

97
9-

8-
35

03
-2

11
0-

4/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
SA

C
I5

82
69

.2
02

3.
10

15
85

89

Authorized licensed use limited to: University of Obuda. Downloaded on September 12,2025 at 15:14:19 UTC from IEEE Xplore. Restrictions apply.

III. METHODOLOGY

Our approach to the problem is based on input images that
require as little post-processing as possible. Taking photos of
the puzzle pieces already distorts them to a degree, and since
we intend to use the shape of the edges for comparisons,
avoiding any further modification to the images is vital. This
is achieved by illuminating the pieces from the bottom using
a screen. With this method, a high contrast, white background
can be used which makes for precise thresholding, while also
eliminating the shadows cast by the pieces that would result in
misshapen edges during detection. Combined with this
solution the pictures are also taken from a fixed height, with
the camera lens parallel to the puzzle piece. This way, the
detected pieces can be treated relatively to each other, while
not needing any corrections regarding their angling. Lastly,
we need to consider the resolution of the taken pictures.
Increasing the image quality past a certain degree not only
results in diminishing returns, but slows down the speed of
detection and provides more opportunities for image errors.

Thanks to the efforts made during image acquisition, the
processing of inputs is relatively simple. After applying a
greyscale filter, a low threshold value can be applied to
remove the background. The resulting image can be used as a
mask on the original, as well as for the input of a boundary
tracing algorithm to find the puzzle piece's contour. As this
array of border points is the basis of further calculations, it is
converted into two additional formats for ease of use, polar
coordinate and chain code representation. The polar
coordinate form uses the middle of the puzzle piece,
calculated by averaging the border points, as its reference
point.

Fig. 1. Locating puzzle piece corners by rectangle approximation

The next step is identifying the four corners of the puzzle
piece. We do this by first finding local maxima in the polar
coordinate representation. Since this solution finds all corners
as well as the tip of any tabs (convex puzzle side), it needs to
be refined further. For this, we utilize the property of puzzle
piece corners being approximately 90° from each other. This
means that with some inaccuracy the four corners can be
considered the corners of a rectangle, as seen in Fig. 1. Using
this criterion we can reliably detect the corners.

Fig. 2. Rotating edge segment with the help of a guide line

With the corners found, we can divide the contour into
four sides. This is done by starting at a corner and adding
subsequent points to the edge until the next corner is reached.
The edges are rotated so that their starting and end points are
at the same height, making all edges uniformly aligned. This
process is shown on Fig. 2. The side is then grouped into one
of three categories. A line is drawn between the first and last
points of the edge, and the height difference of the edge points
and the line is averaged. If this average is around zero,
meaning the edge does not deviate much from the straight line,
the side is considered straight. If the points tend to be above
the line, it is considered a tab or convex side, otherwise, it is
categorized as a blank or concave.

After the last step, we have access to all puzzle pieces and
their important features. The assembly of the whole picture is
done by two separate modules working in tandem. The
simpler, more mathematical part conducts comparisons
between puzzle pieces. It has no information about the whole
picture, its only task is judging how good of a fit two edges
make. The module responsible for the whole assembly is more
complex, handling the assembly logic as well as assigning
work to the comparer, using the results and a given strategy to
assemble the whole puzzle.

Finding the pair of an edge involves taking a group of
candidate edges, comparing each one to the original edge, and
selecting the one with the best fitness. The number of
candidates can be reduced by applying certain logical rules
when selecting them. First, the pair of a convex edges can only
ever be a concave one, and vice versa. A straight edge can
never be the pair of any other edge, so they can be excluded
from comparisons. Additionally, edges that already have a
match can't be matched again, and an edge can never have a
pair that is from the same puzzle piece as itself. These rules
reduce the number of possible pairings greatly, but there are
additional observations we can make, exploiting straight
edges. Let us consider the neighbors of an edge and the two
other edges that are directly next to it on a puzzle piece. For
example, the left neighbor of the top edge is the left edge, and
its right neighbor is the right edge. The following statements
can be made:

• if an edge's left neighbor is straight, it can only be
matched to an edge whose right neighbor is also
straight

• if an edge's right neighbor is straight, it can only be
matched to an edge whose left neighbor is also straight

These rules are based on the fact that jigsaw puzzles
always have an unbroken, straight border. Similarly, the
following can be stated regarding non-border edges:

• if an edge's left neighbor is not straight, it can only be
matched to an edge whose right neighbor is also not
straight

O. Balogh, Z. Vámossy • Solving Jigsaw Puzzles Using Computer Vision and Curve Similarity Measures

000808

Authorized licensed use limited to: University of Obuda. Downloaded on September 12,2025 at 15:14:19 UTC from IEEE Xplore. Restrictions apply.

• if an edge's right neighbor is not straight, it can only be
matched to an edge whose left neighbor is also not
straight

Using these restrictions the number of comparisons can be
reduced further, not only resulting in faster matching but
potentially avoiding false positive pairs.

Our program is modular in design, meaning the type of
comparison algorithm and assembly strategy can be swapped
and combined in any manner. Regarding comparisons, we
tested two similarity measures: Hausdorff distance and
Dynamic Time Warping.

Hausdorff distance is a metric that can be used to compare
two curves. It is ideal for puzzle edge comparisons, as the two
shapes don't have to match in length. We use the following
formula to calculate it, where X and Y are two sides being
compared.

max
�∈�

min 	
�,
�

The second comparison method tested is Dynamic Time
Warping. While it's most commonly used for comparing time-
based sequences, the warping aspect can be useful to compare
edges that are similar in shape, but not in size.

The assembly module is responsible for positioning the
puzzle pieces in the correct location and orientation. Since we
do not provide any external information about the whole
puzzle picture, the starting point for assembly is always a
corner piece, which is placed and rotated as the top-left piece.
It is worth noting that the corner piece is selected at random,
so it is entirely possible that the initial puzzle piece is not the
actual top-left piece but another corner. This does not affect
assembly, and the only consequence is that the output image
will be rotated.

The first implemented assembly strategy places pieces in
row-major order. After the initial corner piece, a matching
piece is placed to the right of it, which is repeated until the last
right edge of the row is straight. The next row's starting piece
is found and placed based on the bottom edge of the previous
row's first piece. These steps are repeated until the whole
puzzle is assembled.

The column-major order assembler works similarly,
except for building the puzzle column-by-column.

The third assembly method is based on a popular approach
when it comes to solving real-life jigsaw puzzles. The core
idea is constructing the frame of the puzzle first, and then
filling the inside. Since only pieces with a straight edge are
part of the frame, those are the only pieces used for
comparisons when constructing the border. Then, the
remaining inside pieces are placed in row-major order.

Since these assemblies provide just a virtual arrangement
of the pieces, the last module of the program uses masked
pictures of puzzle pieces to graphically assemble the full
image. These pieces are positioned on the picture regarding
other pieces already placed, being rotated to fit better visually
if necessary.

IV. EVALUATION

Testing was conducted using two, 25-piece jigsaw
puzzles. Each piece was placed and illuminated from the
bottom using a tablet displaying a static white image, and the
pictures were taken with a phone fixed above the capture area.

The program was written in C#, using various features of the
.NET and Accord.NET frameworks. All measurements are the
result of multiple test runs, averaged. For testing, 1280 × 720
pixel resolution pictures were used which proved to be a good
middle ground between processing speed and image clarity.

Generally, the most impactful step regarding to the final
output is image acquisition and detection. If an input image is
inadequate, the puzzle piece is not detected correctly, resulting
in wrong descriptors. This makes it harder to find proper edge
pairs, resulting in incorrect assemblies. Since any information
lost during the input phase is irrecoverable later, it is important
to gather as much and as precise data as possible. Detecting
25 input images took 44.7 seconds on average when done
serialized, and 37.3 seconds when parallelized. Since
detecting each piece is a separate task, it can be easily
parallelized.

Fig. 3 and 4 show the final results of two datasets. The
images presented are cropped and rotated for ease of viewing.

Fig. 3. Complete puzzle assembled by the program from the first dataset

Fig. 4. Complete puzzle assembled by the program from the second dataset

Tables 1 and 2 show the respective runtimes of different
assembly strategies combined with each comparison
algorithm for each dataset.

SACI 2023 • IEEE 17th International Symposium on Applied Computational Intelligence and Informatics • May 23-26, 2023 • Timişoara, Romania

000809

Authorized licensed use limited to: University of Obuda. Downloaded on September 12,2025 at 15:14:19 UTC from IEEE Xplore. Restrictions apply.

TABLE 1 PUZZLE ASSEMBLY RUNTIMES FOR FIRST DATASET
(MILLISECONDS)

 Hausdorff Hausdorff,

additional

logic

Dynamic

Time

Warping

Dynamic

Time

Warping,

additional

logic

Row-
major

6 610 2 800 47 619 20 001

Column-
major

5 654 2 316 40 642 16 526

Frame 3 586 2 128 25 932 15 264

TABLE 2 PUZZLE ASSEMBLY RUNTIMES FOR SECOND DATASET
(MILLISECONDS)

 Hausdorff Hausdorff,

additional

logic

Dynamic

Time

Warping

Dynamic

Time

Warping,

additional

logic

Row-
major

7 513 3 128 N/Aa 22 747

Column-
major

6 439 2 634 39 798 18 714

Frame 4 203 2 419 30 802 17 557
a.
 Incorrectly determined match resulted in an error

These results show a few peculiarities. First, on average
the second puzzle’s assembly took more time than the first.
While they are both 25-piece sets, edge segments from the
second set on average have 743 points, while edges from the
first puzzle have only 698. Since the comparisons go over each
point, this difference adds up, resulting in the difference.
Second, in both cases row-major assembly was slower than
column-major assembly. This is for a similar reason – the
puzzle pieces used for testing are elongated in shape, meaning
they have two longer and two shorter sides. Since these
strategies do comparisons on the same side repeatedly, one
keeps comparing against longer sides, hence the difference in
speed.

Based on our testing, Dynamic Time Warping is
considerably slower than the Hausdorff comparison. This is to
be expected – while Hausdorff distance is a relatively simple
shape comparison algorithm using minimum and maximum
searches, Dynamic Time Warping is more complicated, with
the manipulation of curves before the comparison is very
resource intensive. Among the different assembly strategies,
constructing the frame first and then the inside proved to be
the fastest. While filtering the pieces based on whether they
have a straight edge or not introduces some overhead, it is
negligible compared to the time saved by avoiding futile
comparisons. The same can be said about introducing
additional logic, as it works similarly – rejecting match
candidates early based on their neighboring edges consists of
four logic checks, which cuts down on the number of later
comparisons.

As Table 2 shows, in one case our program failed to
correctly assemble the puzzle. This happened due to an
incorrectly matched piece after the initial corner piece was
placed, resulting in an entirely wrong assembly. This issue
was solved with the introduction of additional logic checks.

V. CONCLUSION

In this paper we presented our approach to building a
computer-based jigsaw puzzle solver. The basis of this was a
robust image acquisition method which results in input images
that require minimal post-processing. We presented and tested

Hausdorff distance and Dynamic Time Warping as possible
puzzle edge comparison algorithms. Applying these along
with different assembly strategies our program was able to
solve two different, 25-piece puzzles.

Possible improvements include implementing more
comparison algorithms and assembly strategies [8], as well as
testing additional puzzle sets.

ACKNOWLEDGMENTS

The authors would like to thank both the GPGPU
Programming Research Group of Óbuda University and the
Hungarian National Talent Program (NTP-HHTDK-22) for
their valuable support.

REFERENCES

[1] H. Freeman and L. Garder, "Apictorial Jigsaw Puzzles: The Computer
Solution of a Problem in Pattern Recognition," in IEEE Transactions
on Electronic Computers, vol. EC-13, no. 2, pp. 118-127, April 1964,
DOI: 10.1109/PGEC.1964.263781.

[2] Á. Altsach, Jigsaw puzzle solver, Thesis, Óbuda University, John von
Neumann Faculty of Informatics, 2013, p. 24

[3] D. A. Kosiba, P. M. Devaux, S. Balasubramanian, T. L. Gandhi and K.
Kasturi, "An automatic jigsaw puzzle solver," Proceedings of 12th
International Conference on Pattern Recognition, 1994, pp. 616-618
vol.1, DOI: 10.1109/ICPR.1994.576377.

[4] T. Ö. Onur, “Improved Image Denoising Using Wavelet Edge
Detection Based on Otsu's Thresholding”, in Acta Polytechnica
Hungarica vol. 19. no. 2. 2022. pp. 79–92., DOI:
10.12700/APH.19.2.2022.2.5

[5] C. Harris and M. Stephens, "A Combined Corner and Edge Detector,"
in Proceedings of the 4th Alvey Vision Conference, 1988, pp. 147-151.

[6] Min Gyo Chung, M. M. Fleck and D. A. Forsyth, "Jigsaw puzzle solver
using shape and color," ICSP '98. 1998 Fourth International
Conference on Signal Processing (Cat. No.98TH8344), 1998, pp. 877-
880 vol.2, DOI: 10.1109/ICOSP.1998.770751.

[7] K. Son, J. Hays and D. B. Cooper, "Solving Square Jigsaw Puzzle by
Hierarchical Loop Constraints," in IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 41, no. 9, pp. 2222-2235, 1
Sept. 2019, DOI: 10.1109/TPAMI.2018.2857776.

[8] I. Lovas, “Fixed Point, Iteration-based, Adaptive Controller Tuning,
Using a Genetic Algorithm”, in Acta Polytechnica Hungarica vol. 19.
no. 2. 2022. pp. 59–77., DOI: 10.12700/APH.19.2.2022.2.5

O. Balogh, Z. Vámossy • Solving Jigsaw Puzzles Using Computer Vision and Curve Similarity Measures

000810

Authorized licensed use limited to: University of Obuda. Downloaded on September 12,2025 at 15:14:19 UTC from IEEE Xplore. Restrictions apply.

