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Abstract—This paper introduces the development of an inno-
vative subsurface stratigraphy generator model, which integrates
LiDAR and borehole data for the effective visualization of
underground geological layers. The proposed software is designed
to offer a straightforward, efficient, and user-friendly approach
to generating 3D representations of subsurface stratifications,
supporting applications in education, geological research, and
geotechnical design. The model employs advanced computational
techniques, including Delaunay triangulation and Kriging inter-
polation, to produce accurate and realistic visualizations. Specifi-
cally, the Kriging method demonstrates exceptional suitability for
lithostratigraphic data interpolation, while Delaunay triangula-
tion ensures robust triangulation of geological structures. The
proposed tool represents a significant advancement in the under-
standing and visualization of subsurface stratigraphy, offering
valuable applications in research, education, and industry-specific
planning processes.

Index Terms—stratigraphic modeling, LiDAR, Kriging inter-
polation, geological visualization

I. INTRODUCTION

Traditional methods, such as manual analysis of strati-
graphic maps or simple drilling data, are lengthy and give
only an abstract idea of the nature of the strata. In contrast,
modeling software can give the user an easily digestible visual
representation. This research aims to build an underground
stratification generator that can model an area using LiDAR
and various borehole point data. An open-source implementa-
tion of the model is also presented.

II. RELATED WORK

The field of stratigraphic modeling has seen significant
advancements through various proprietary- and open-source
tools. Software such as RockWare RockWorks [1] and
Leapfrog Geo [2] provide robust modeling and visualization
capabilities but often come with high costs, steep learning
curves, and licensing constraints. The main targets of these
highly specialized tools are advanced users with substantial
technical expertise, which limits their accessibility for educa-
tional purposes.

In contrast, approaches such as GeoStudio and GOCAD
offer targeted solutions, focusing on geotechnical analysis
and reservoir modeling. However, their rigid implementation
and dependence on specific data formats often make them
unsuitable for exploratory or diverse geological studies. Re-
cent research [3] employing ArcGIS and 3DSMax highlights

simplified workflows but remains limited to environments
requiring these specific commercial tools.

Kriging interpolation [4] is an advanced geostatistical
method used to estimate values at unsampled locations based
on known data points. It is particularly effective in spatial
analysis, as it accounts for the spatial correlation between data
points. Unlike simpler interpolation methods, Kriging not only
predicts values but also provides a measure of the uncertainty
or accuracy of these predictions. The process involves creating
a mathematical model of spatial relationships and using this
model to assign weights to nearby data points. These weights
are then used to calculate the estimated value at a specific
location. Kriging is widely applied in fields like geology [5],
environmental science [6], simulation [7], and mining, where
understanding spatial variability is crucial.

Delaunay triangulation is a geometric technique used in
computational geometry to divide a set of points into triangles.
It ensures that no point lies inside the circumcircle (the circle
passing through all three vertices) of any triangle in the
triangulation. This property maximizes the minimum angle
of all the triangles, avoiding thin or sliver-like triangles and
creating a more uniform mesh. This method is widely used
in fields like computer graphics [8], geographic information
systems (GIS) [9], and finite element analysis, as it provides
an efficient way to model surfaces and structures.

Our study takes inspiration from these methodologies while
aiming to create a cost-effective, open-source alternative. By
utilizing widely accessible technologies such as LiDAR and
borehole data, combined with efficient algorithms like Kriging
interpolation and Delaunay triangulation, our work bridges the
gap between academic research and practical application.

III. METHODOLOGY

The foundation of the software lies in its ability to integrate
LiDAR-based Digital Elevation Models (DEM) with borehole
data. These datasets provide a comprehensive understanding
of the terrain and subterranean structures.

The software is developed in C++, utilizing the CMake
build system for seamless integration and management. The
database backbone, based on PostgreSQL with the PostGIS
extension, ensures optimal, industry-standard spatial data han-
dling. A lightweight Node.js API facilitates communication
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between the frontend and the backend server, providing users
with a responsive and intuitive experience.

A. Data Management and Access
The data utilized is served from a centralized server in-

stance, encapsulated within a Docker container to ensure
streamlined deployment and portability. Data ingestion and
preprocessing are automated via a PowerShell script that
executes the following key steps:

1) Data Loading: All locally stored GeoTIFF raster files
and drilling point data (in JSON format) are collected for
further processing.

2) Raster Data Processing: Using the raster2pgsql com-
mand, raster image files are transformed into SQL tables.
These tables follow a naming convention of ¡FILENAME¿-
raster, enabling clear identification and referencing within the
database.

3) Drilling Point Data Handling: To simplify data man-
agement, drilling point objects from multiple JSON files are
merged into a single CSV file, easing subsequent database
imports.

4) Database Import: The resulting CSV file is imported
into the database using the copy command, allowing for
efficient and high-performance data loading.

5) Geometric Transformation: Coordinates defined by
EovX and EovY values are converted into PostGIS geometries.
This enables spatial operations such as defining the inter-
section of given areas with selected sets of drilling points,
leveraging LiDAR-based metadata. In response to a request at
the /get-data/:name endpoint, the server returns a ZIP archive
containing the corresponding TIFF file and a JSON file with
the filtered drilling points. This packaged dataset can then be
processed on the client side.

B. Kriging Interpolation
Kriging is a geostatistical interpolation method that lever-

ages spatial correlations among data points to estimate un-
known values [10]. Its main steps are:

1) Variogram Construction: It computes the distances be-
tween each pair of points and the half-squared difference of
their values. Then, it sorts the resulting pairs by distance
to derive an empirical variogram, which shows how spatial
correlation changes with distance [11].

2) Theoretical Function Fitting: The algorithm then fits
a Gaussian theoretical model to the empirical variogram.
This provides a continuous function that describes the spatial
relationship and allows estimation at any location [11].

3) Covariance Matrix Construction: Using the fitted model
parameters (nugget, sill, range), it creates a covariance matrix
that quantifies how each known point correlates with every
other point [11].

4) Matrix Factorization and Precomputation: To mitigate
the estimation error due to the sparsity of data, the algorithm
applies ridge regression. After this step, the covariance matrix
is factorized via LU decomposition, and the matrix inverse
is precomputed for efficient computation of interpolation
weights.

5) Value Estimation: The algorithm then computes the
covariance of each point with all known points and solves the
resulting linear system to obtain weights for these points, and
then computes the weighted sum of their values to estimate
the unknown value. Using the sill, the variance vector, and the
weights vector, it is possible to compute an uncertainty value,
which the program uses in a later step.

This procedure results in an interpolation matrix and an
uncertainty matrix that account for both the spatial distribution
of known points and their measured values.

C. Reducing noise on the DEM raster

When modeling subsurface layers, unwanted surface irreg-
ularities (such as those caused by erosion) can distort the
interpolation results. To address this, filtering algorithms are
applied to reduce high-frequency details in the input data,
ensuring smoother lower layers. Two common methods are:

1) Gaussian Filtering: Gaussian blurring is a classic image
processing technique used to smooth noise and details. It is
based on the Gaussian distribution and involves convolving
the input data with a Gaussian kernel. Each output value is
a weighted average of neighboring points, where the weights
decrease with distance from the center point. Adjusting the
kernel size and the standard deviation (σ) of the Gaussian
allows for fine-tuning the smoothing effect [12].

2) Median Filtering: The median filter replaces the value
of each point with the median of its neighborhood values. This
approach effectively reduces noise while preserving edges un-
der certain conditions. However, large median filter windows
may introduce artificially round boundaries. A combination
of median and Gaussian filters can yield improved results,
especially for smoothing large valleys while maintaining a
more natural appearance [13].

D. Shifting and finalizing layer data

Using the interpolated data and a blurred representation of
the LiDAR map, all point positions are finalized for each layer;
this is done by subtracting the interpolation value for the given
position from the corresponding value of the raster. It is also
necessary to ensure that the layers do not cross each other.
This step also involves the uncertainty matrix. Based on the
matrix values, the model tries to apply correction by factoring
in the normalized values of the layer above.

E. Texture creation

1) Mesh Generation: The MeshGenerator is responsible
for creating 3D meshes for layered structures by leveraging
a LayerBuilder instance. This process is designed to be sys-
tematic and incremental, focusing on generating the necessary
geometry layer by layer.

2) Triangulation: The first step involves triangulating the
3D points of the layer. This requires extracting the (x, y)
coordinates from the 3D points for a 2D triangulation process
while also preserving the z coordinates (elevations) for later
use. These elevations are stored in a mapping structure for easy
access. Using a computational geometry library such as CGAL,
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the system constructs a constrained Delaunay triangulation
(CDT2). This step ensures that the edges and faces of the
triangulation accurately represent the surface geometry of the
layer.

3) 3D Surface Generation: Based on the triangulation, a 3D
surface is constructed by mapping the z coordinates back to the
vertices. The triangulated faces are converted into 3D triangles
by incorporating the stored elevation data. The resulting 3D
surface mesh encapsulates the geometry of the layer, ready for
further processing.

4) Extrusion: To give the surface mesh a volumetric rep-
resentation, it is extruded along the z-axis. The extrusion is
performed downward, reaching a plane that lies below the
lowest point of the bottommost layer. This step ensures that
the volume of each layer is fully captured, forming a complete
representation of its thickness and spatial extent.

5) Difference Calculation: The difference calculation is
performed to separate adjacent layers. The extruded mesh
of the current layer is subtracted from the extruded mesh
of the layer immediately below it. This subtraction ensures
that only the unique portion of the current layer’s volume is
retained. After the operation, the resulting mesh is validated
for consistency, and the updated mesh becomes the final
representation of the current layer. This process is repeated
for each layer, starting from the bottom layer and proceeding
upward.

F. Visualization
Visualization is a key aspect of the workflow, enabling users

to inspect the generated meshes and verify their accuracy. The
software employs the Visualization Toolkit (VTK) to render
the 3D layers interactively.

1) Conversion: To prepare the generated meshes for render-
ing, they are converted from the CGAL SurfaceMesh format
to vtkPolyData. During the conversion, vertex coordinates are
extracted and transferred to a VTK-compatible format. Trian-
gular faces are identified and mapped into VTK cells. This
ensures that the mesh geometry is preserved while making it
compatible with the visualization framework.

2) Rendering: The converted meshes, stored as vtkPoly-
Data objects, are registered with the rendering engine for
visualization (Fig. 1). The rendering engine then displays the
3D models in an interactive window, allowing users to explore
and analyze the structure from multiple angles. This capability
ensures that the system is not only accurate in its computations
but also user-friendly and visually intuitive.

G. User Interface
The graphical user interface developed for this project is

designed with a strong focus on accessibility, ensuring that
even users with minimal experience in the field can easily
navigate and use the application.

IV. EVALUATION

A. Accuracy Assessment
1) Cross-Validation: The “leave-one-out” cross-validation

method systematically omits each measured data point and

Fig. 1. Renderer output

TABLE I
CROSS-VALIDATION RESULTS FOR THE INVESTIGATED LAYERS

Layer MAE RMSE

Soil 3.43 m 4.43 m
Jakabhegy Sandstone Formation 45.10 m 69.73 m
Cserkút and Tótvár Members Combined 17.52 m 25.59 m
Kővágótöttös Sandstone Member 18.14 m 24.03 m

then uses the remaining dataset to produce an estimate for
the omitted point. By comparing the estimated value with the
known measurement, it is possible to assess how well the in-
terpolation technique performs. Specifically, for each iteration,
the point under examination is temporarily removed, and this
omitted data point serves as a reference. The variogram is then
calculated on the reduced dataset, and the covariance matrix is
derived. Using these results, Kriging is applied to estimate the
value at the excluded point. The absolute difference between
the estimated and actual values provides the estimation error
for that location.

Repeating this process for all data points generates a series
of differences that capture the overall quality of the interpo-
lation. Statistical measures, such as the Mean Absolute Error
(MAE) and the Root Mean Squared Error (RMSE), are then
employed to summarize these errors. Table I presents the
cross-validation results for the investigated layers from the
studied area:

The results show that the Jakabhegy Sandstone Formation
exhibits a notably higher average deviation than the other
layers. Fewer known points are available compared to other
layers, and the data originated from a single cluster. Conse-
quently, the significant discrepancies can be attributed to the
lower density and less diverse distribution of input data points.
Predictions with large deviations more heavily influence the
average error, and the outer boundary points tend to show
more significant discrepancies due to these data limitations.

2) Validation Using Synthetic Data: One critical limitation
of cross-validation using real-world data is the lack of ground
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Fig. 2. Average deviation for synthetic layers

truth for each interpolated point. While real sampling locations
and measurements are limited, this prevents a direct compar-
ison between the estimated values and their actual reference
counterparts. Synthetic datasets can be employed to address
this issue, as they provide complete reference values across the
entire domain. By generating a synthetic surface analogous to
the subsurface layers of interest, we can perform an exhaustive
evaluation of interpolation quality.

In this work, Perlin noise-based approach is applied to
create a 100×100 synthetic elevation matrix, which simulates
a continuous surface. Once this synthetic surface is generated,
it is sampled to produce input data for the Kriging interpola-
tion. To simulate varying borehole patterns and their inherent
uncertainty, we select the sampling points using a normal
distribution. The key aspects to consider are:

1) Number of Data Points (N ): Determining the appropri-
ate number of samples used for Kriging interpolation
is crucial. In the experiments, N varies from 10 to 30
to assess how the density of input points influences
interpolation accuracy.

2) Data Distribution: Predefining the spatial distribution
of the data points ensures that our validation frame-
work captures the randomness of drilling locations. We
leverage normal distributions with different standard
deviations (σ) ranging from 0.1 to 0.3 to control the
spatial clustering or spread of sampling points.

By manipulating N and σ, we construct a series of synthetic
layers (21×21 in size) and investigate how these parameters
affect interpolation performance. The following figure shows
the average deviation for each generated layer, along with the
layer generation parameters.

Fig. 3. Interpolation process for 10,000 points (red line: variogram calcu-
lation, blue line: covariance matrix calculation, green line: Kriging for all
points)

B. Computational Performance

The computational efficiency of the model was tested by
varying dataset sizes and complexity. Results showed that the
system scales effectively, maintaining low computation times
even for dense datasets. Optimizations such as multi-threaded
processing and efficient memory management contributed to
these outcomes.

1) Interpolation: The runtime of the interpolation pro-
cess varies significantly based on the number of observed
points. Testing reveals that as the number of known points
increases, the relative distribution of time spent on different
sub-processes within the interpolation also changes. For a test
layer with a resolution of 10,000 data points, the results in
Fig. 3 highlight how these proportions evolve.

2) Mesh Generation: Mesh generation is identified as one
of the most time-consuming stages in the entire process, with
an average runtime of 7.529 seconds over 100 runs. Reducing
the number of points used, such as considering only every 10th
point, significantly decreases the runtime to 3.489 seconds, less
than half of the original. However, this optimization comes
with trade-offs, notably a reduction in the output polygon
resolution and the creation of more straightforward, flatter
surfaces. Balancing runtime efficiency and output quality is
a key consideration during this stage.

3) Rendering: Rendering the generated meshes is relatively
fast, with an average runtime of 0.728 seconds across 100 runs.
This efficiency ensures that the visualization component does
not become a bottleneck in the workflow, allowing users to
interact with and verify the results promptly.

V. CONCLUSIONS

This research presents the development of a subsurface
stratigraphy generator model that uses LiDAR and borehole
data to visualize underground layers effectively. The software
aims to provide a simple, fast, and user-friendly way to create
3D models of underground stratifications, thereby assisting
teaching, geological research, and geotechnical design.

The novel model is based on technologies such as Delaunay
triangulation and Kriging interpolation, enabling the creation
of accurate and realistic models. The Kriging method is
particularly suitable for interpolating lithostratigraphic data,
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while Delaunay triangulation provides excellent results in
triangulating geological structures.

Overall, the developed model can significantly contribute
to the understanding and visualization of subsurface stratifi-
cations, thereby facilitating research and planning processes
across various industries.

Future developments may include the integration of addi-
tional data types, more parallel data processing, and improved
interpolation strategies.
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